

Future Clinical Trials in IgA Nephropathy

Professor Jonathan Barratt

University of Leicester

&

John Walls Renal Unit, Leicester

Future Clinical Trials in IgA Nephropathy

How long have we got.....

Professor Jonathan Barratt

University of Leicester

&

John Walls Renal Unit, Leicester

Future Clinical Trials in IgA Nephropathy

15 minutes!

Professor Jonathan Barratt

University of Leicester

&

John Walls Renal Unit, Leicester

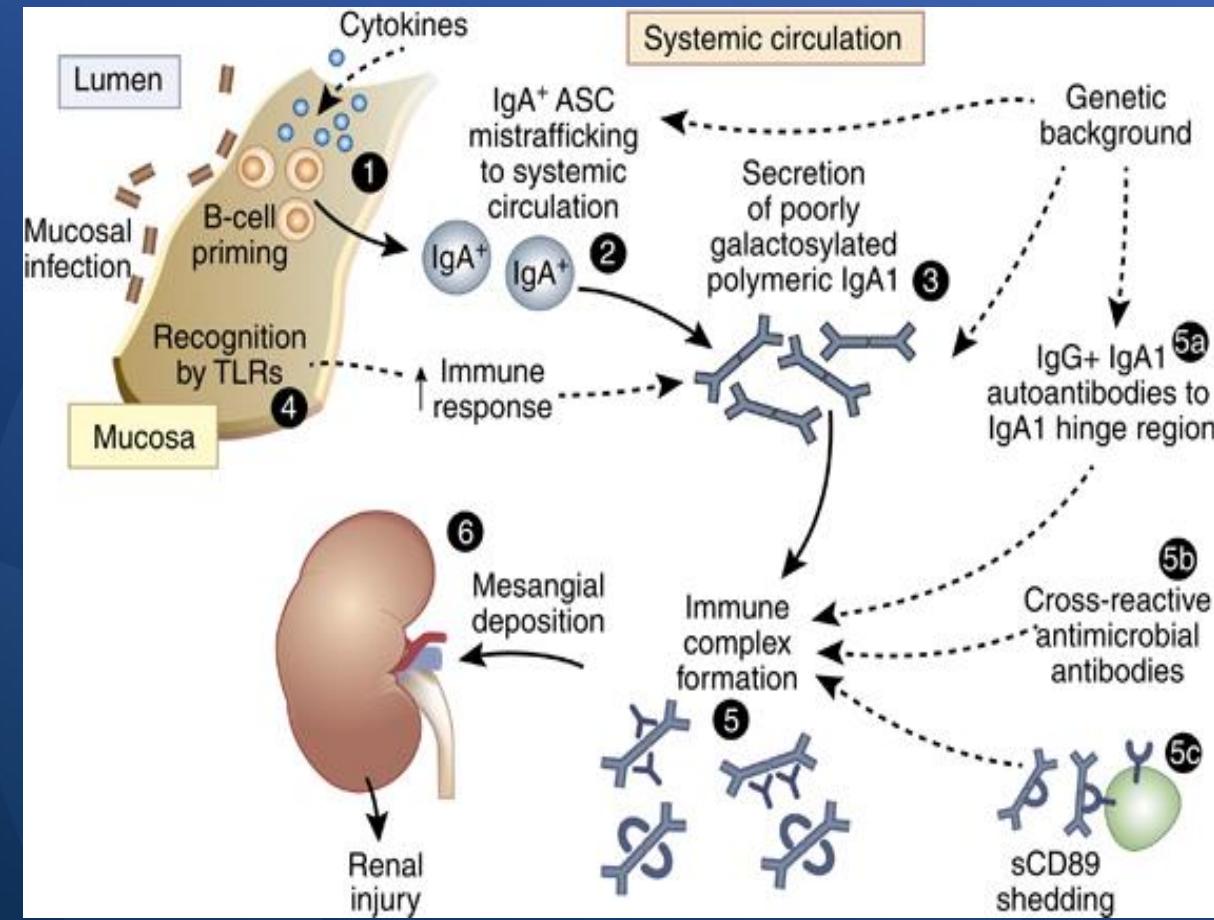
Speaker Declarations

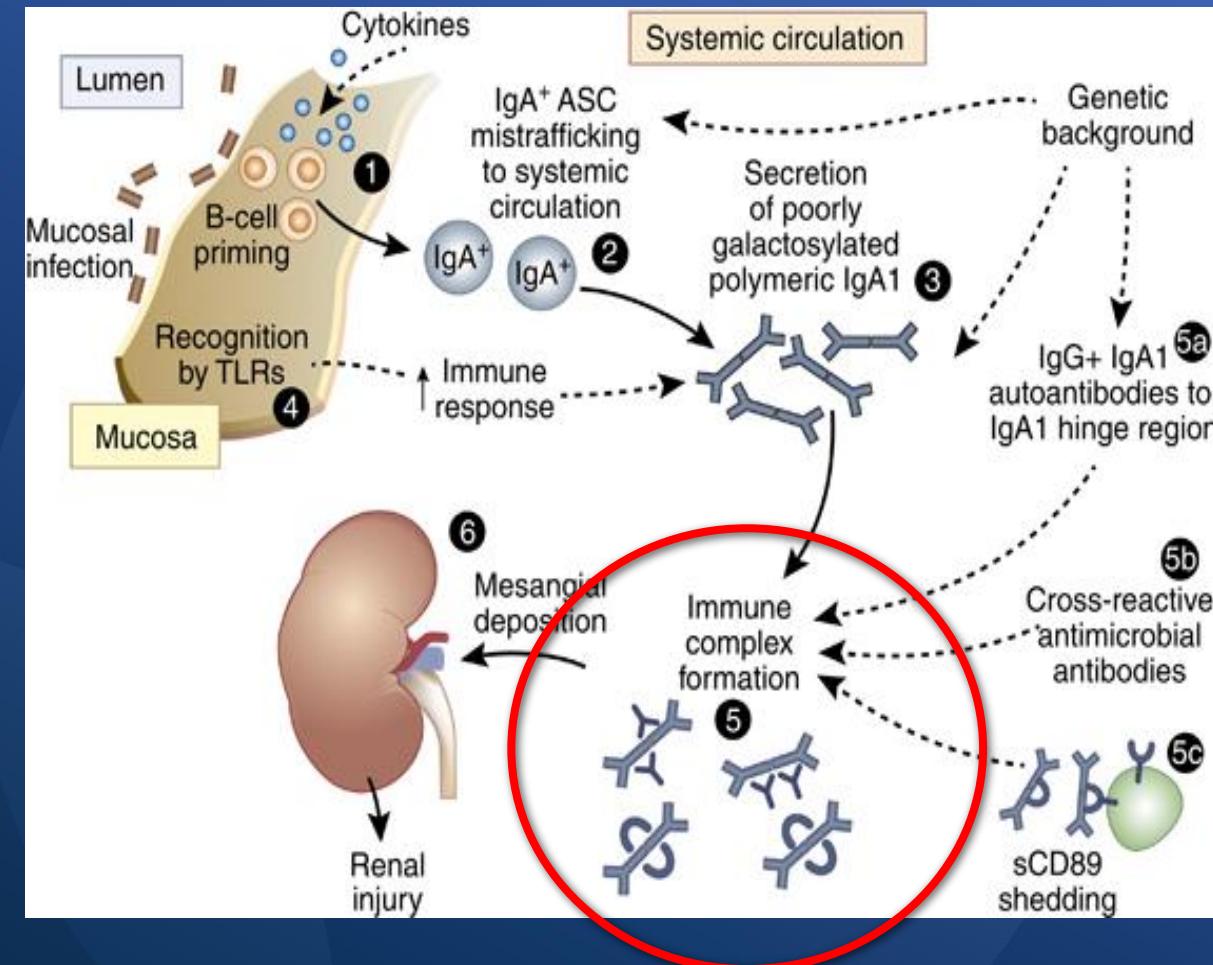
Jonathan Barratt

Consulting and Speaker Fees

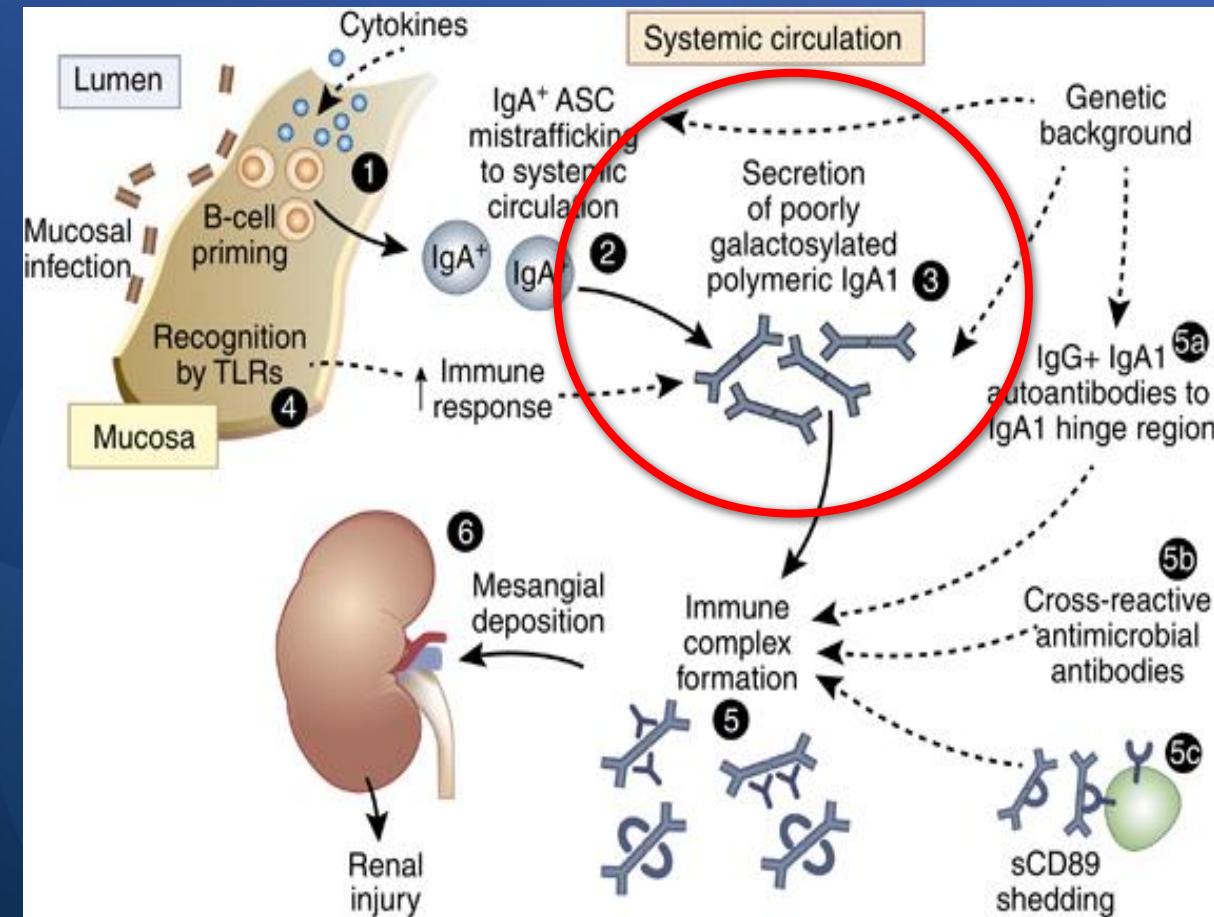
Alnylam, Argenx, Astellas, BioCryst, Calliditas, Chinook, Dimerix, Galapagos, Novartis, Omeros, Travere Therapeutics, Vera Therapeutics, Visterra

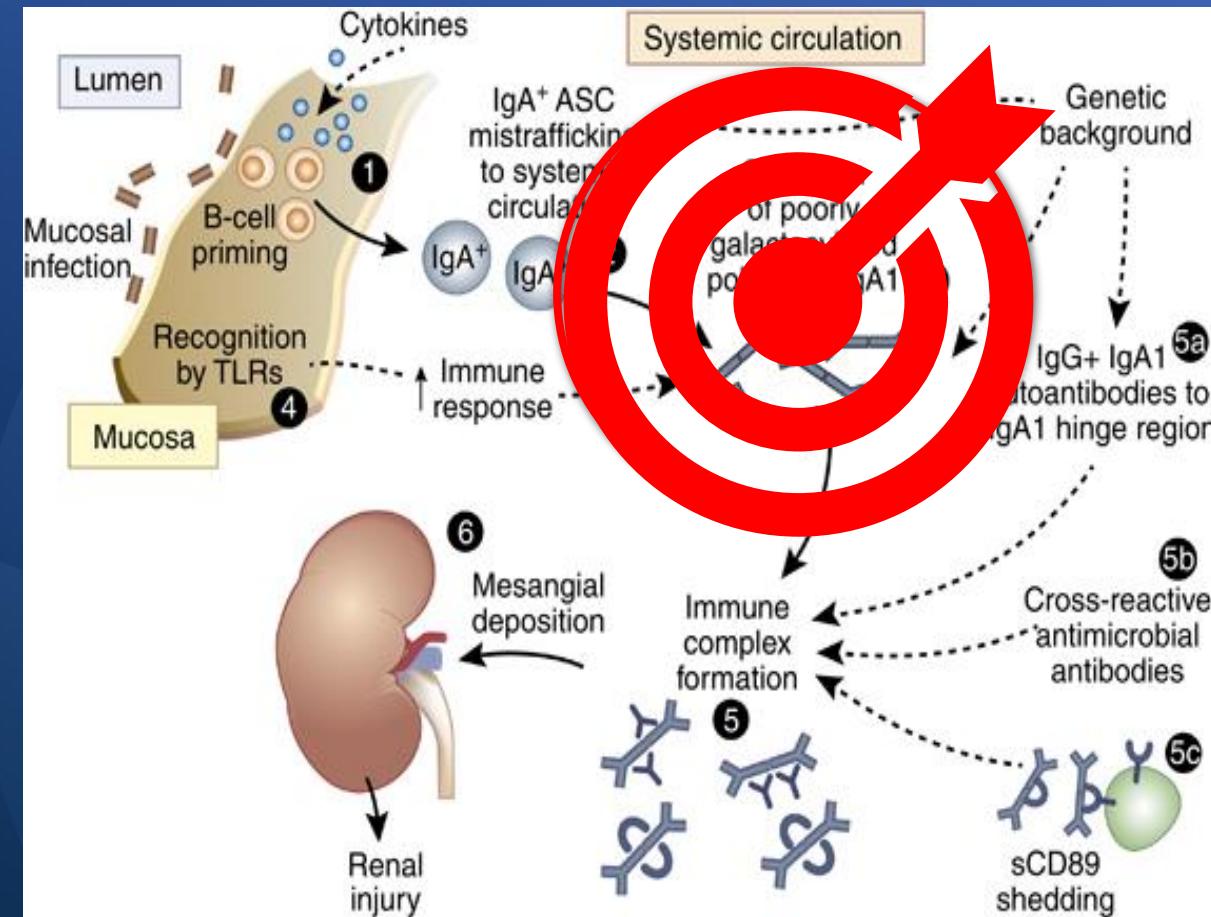
Grant Support

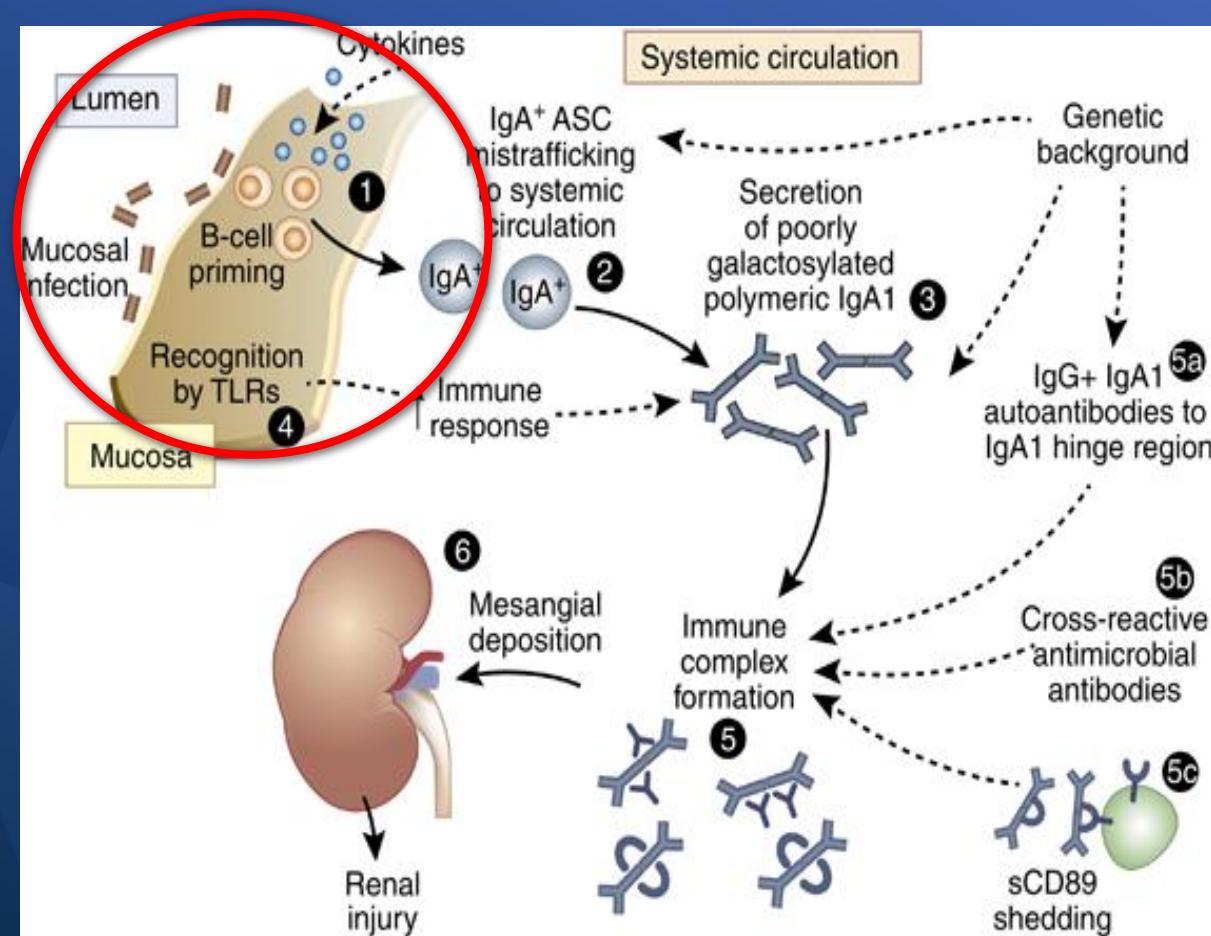

Argenx, Calliditas, Chinook, Galapagos, GlaxoSmithKline, Novartis, Omeros, Travere Therapeutics, Visterra

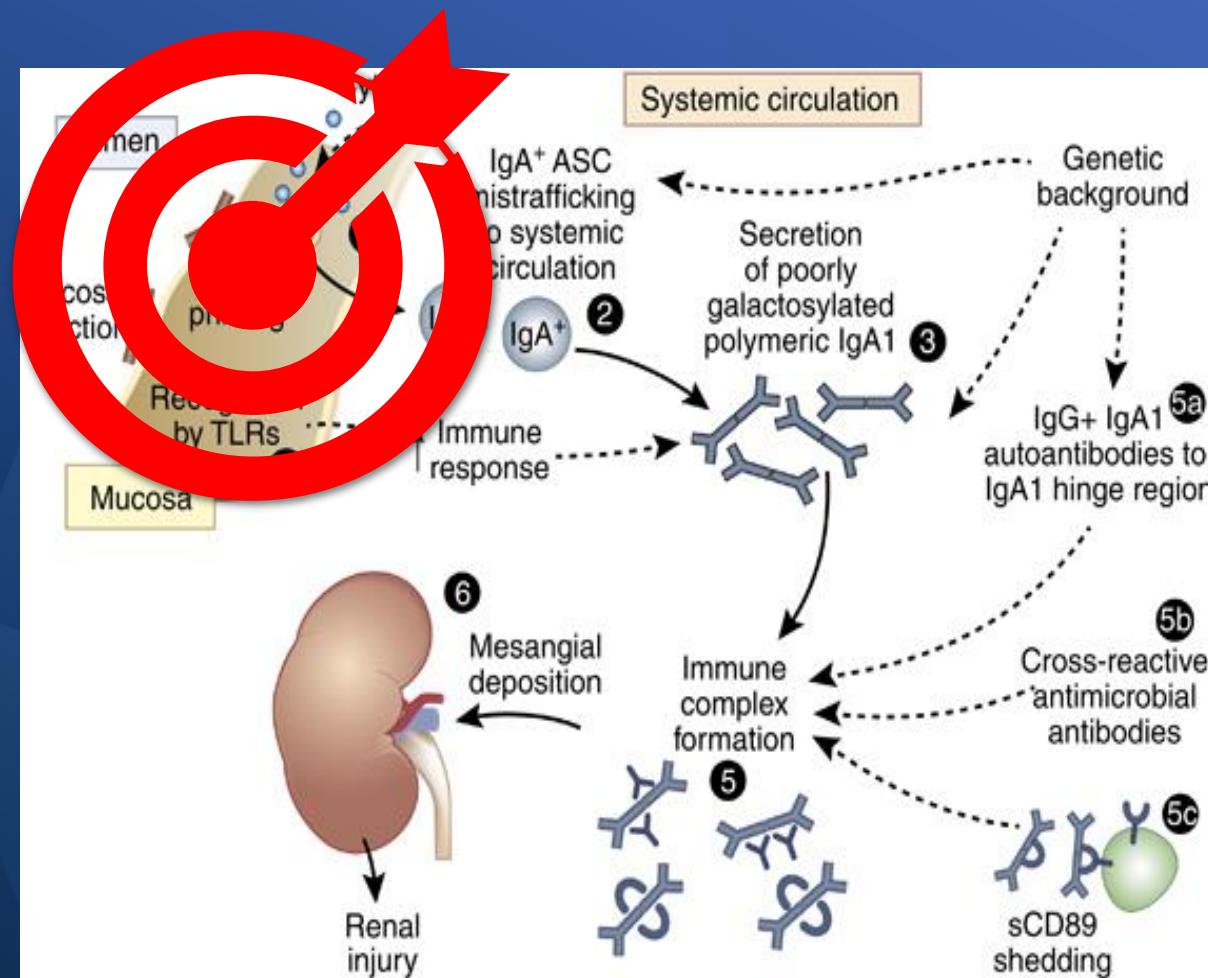

Clinical trials

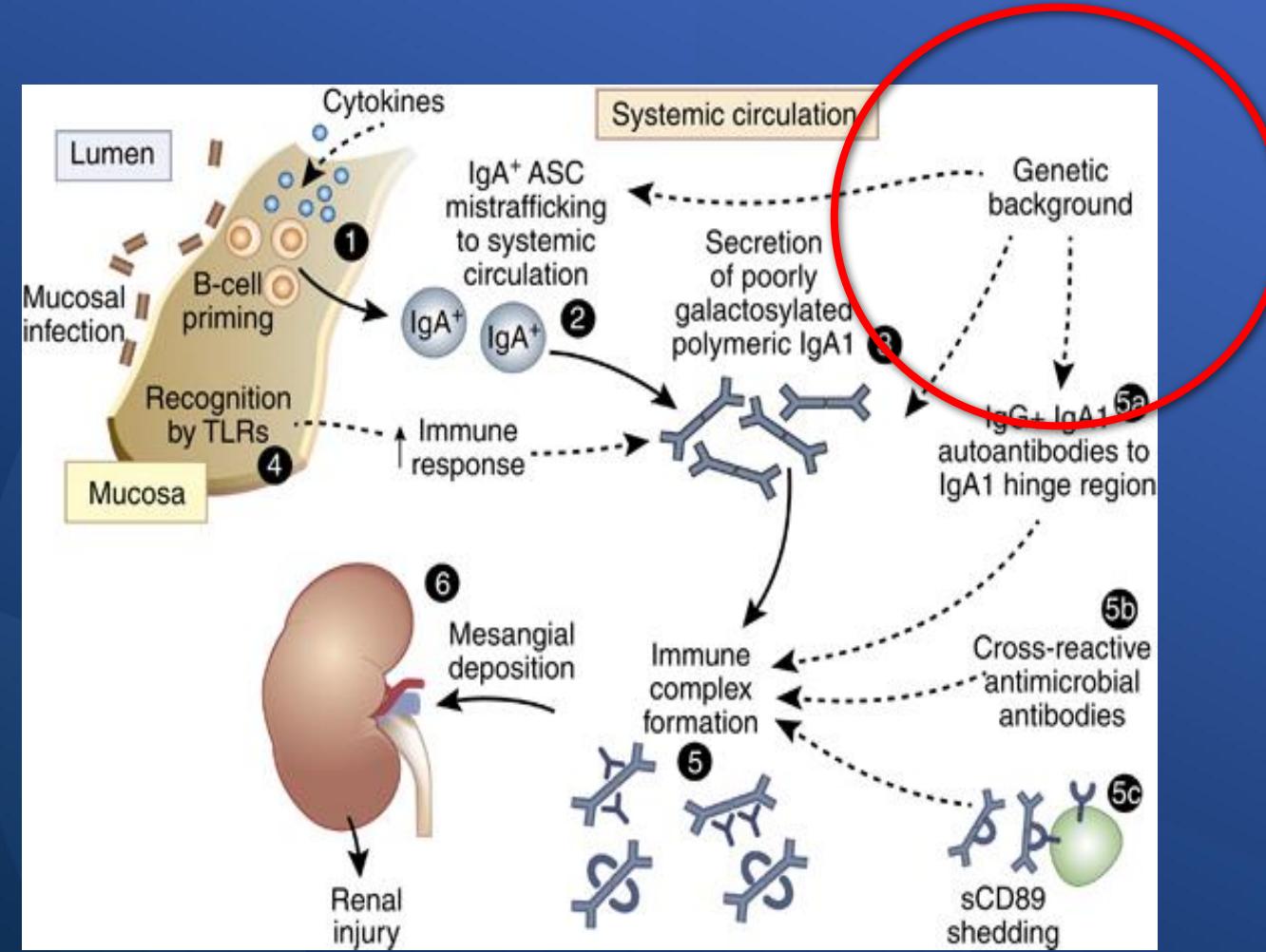
ADU-CL-19 & ALIGN (Chinook), APPLAUSE (Novartis), ARTEMIS-IGAN (Omeros), ENVISION (Visterra), NeflgARD (Calliditas), ORIGIN (Vera Therapeutics)


Research projects

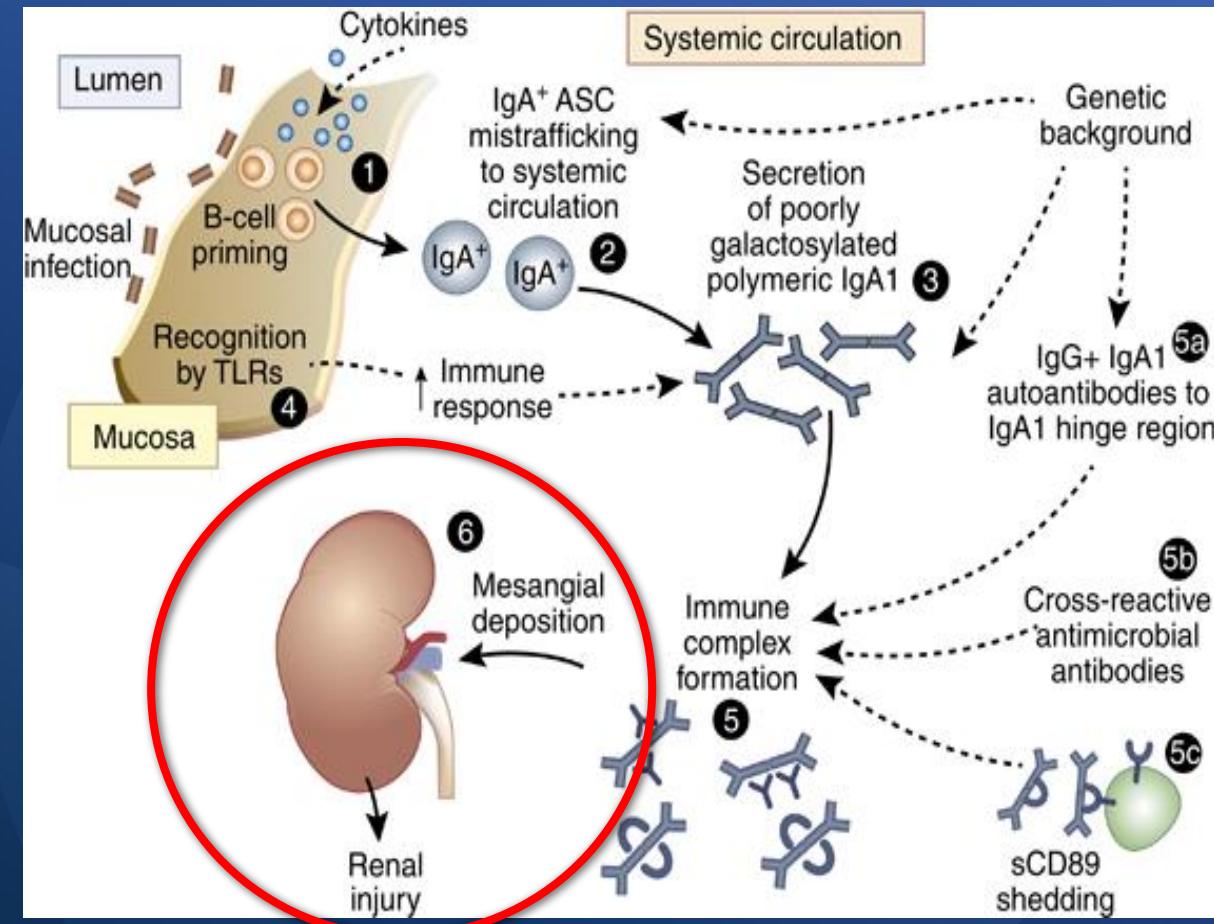

Argenx, Calliditas, Chinook, Galapagos, GlaxoSmithKline, Novartis, Omeros, Travere Therapeutics, Visterra

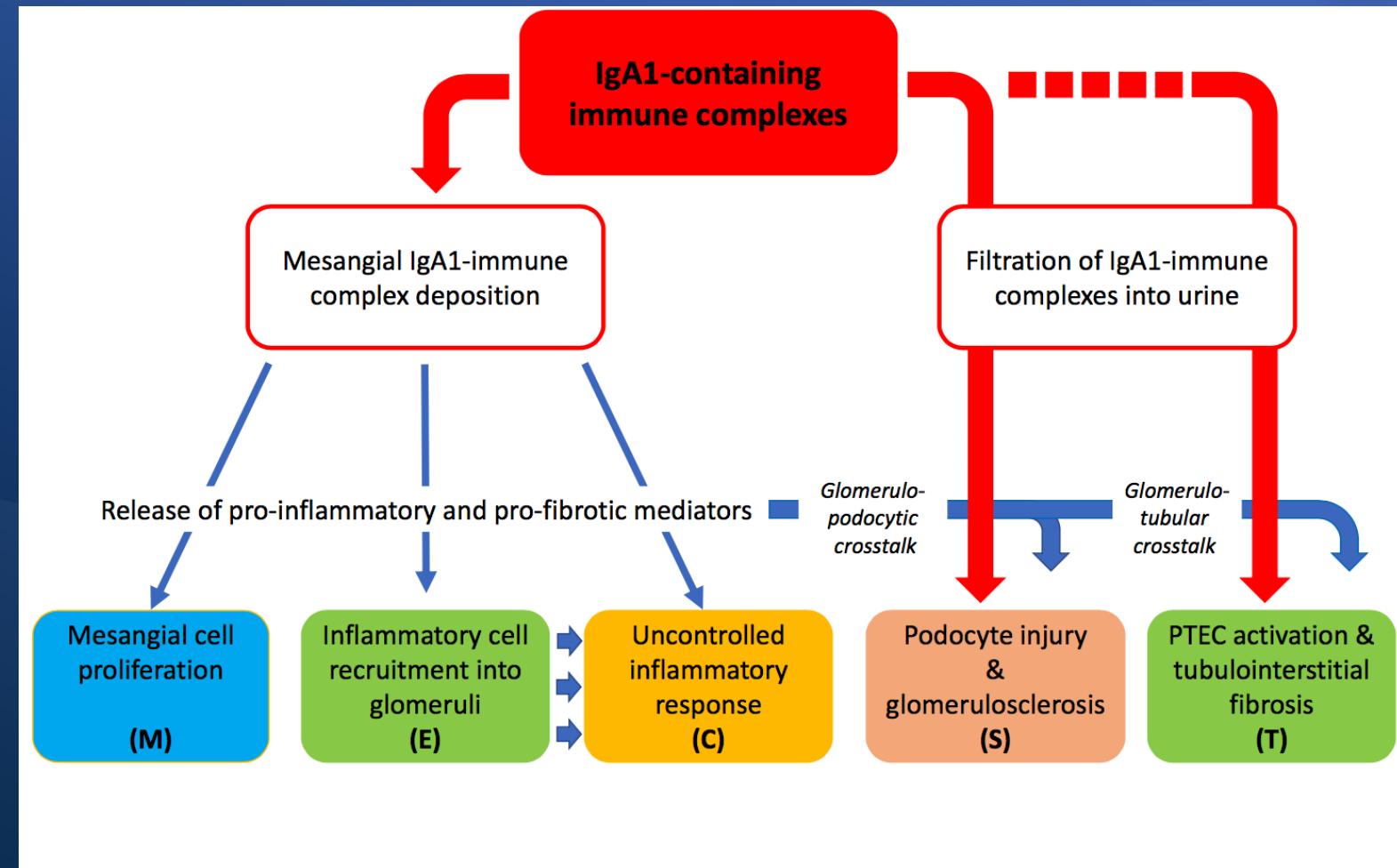


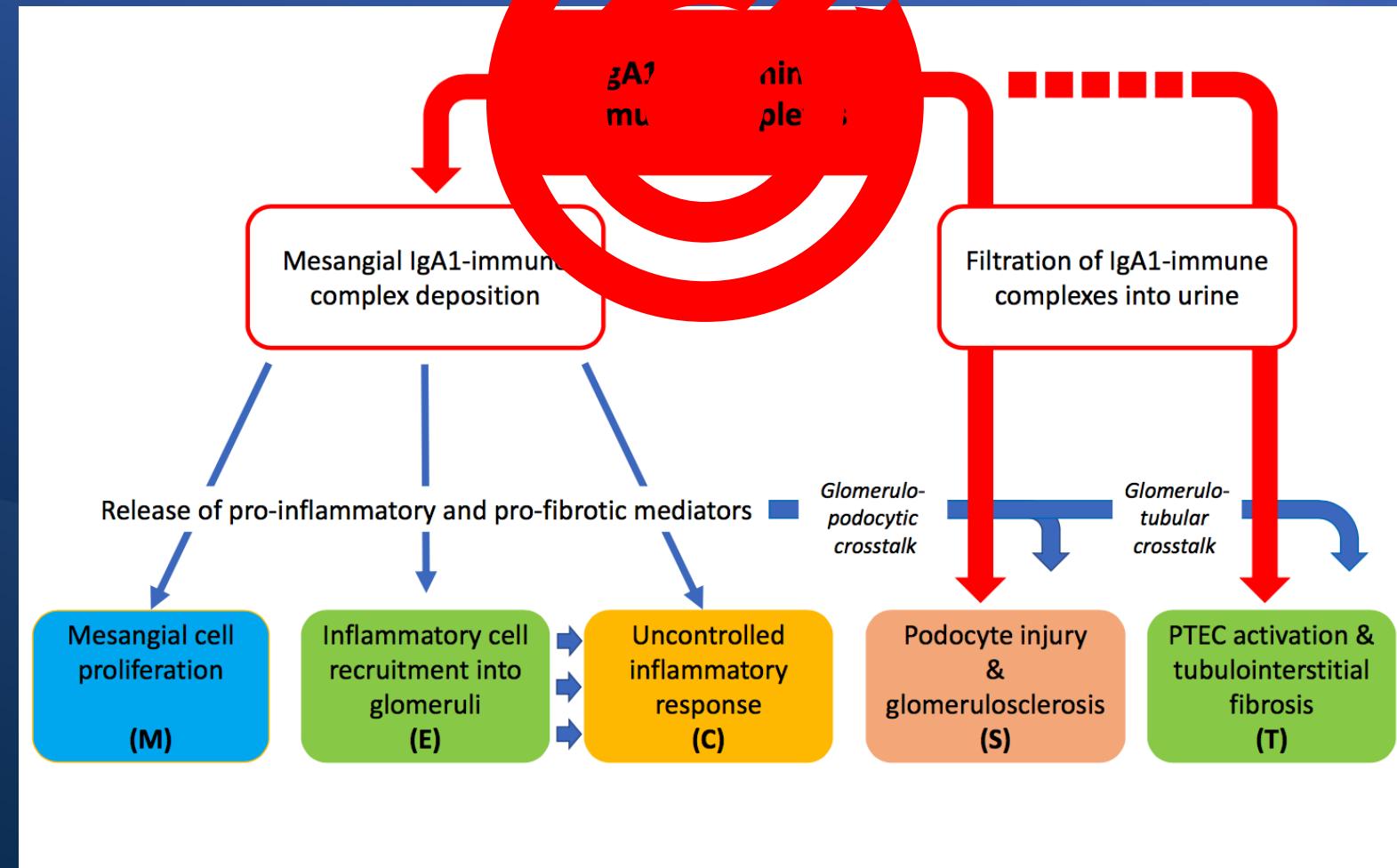


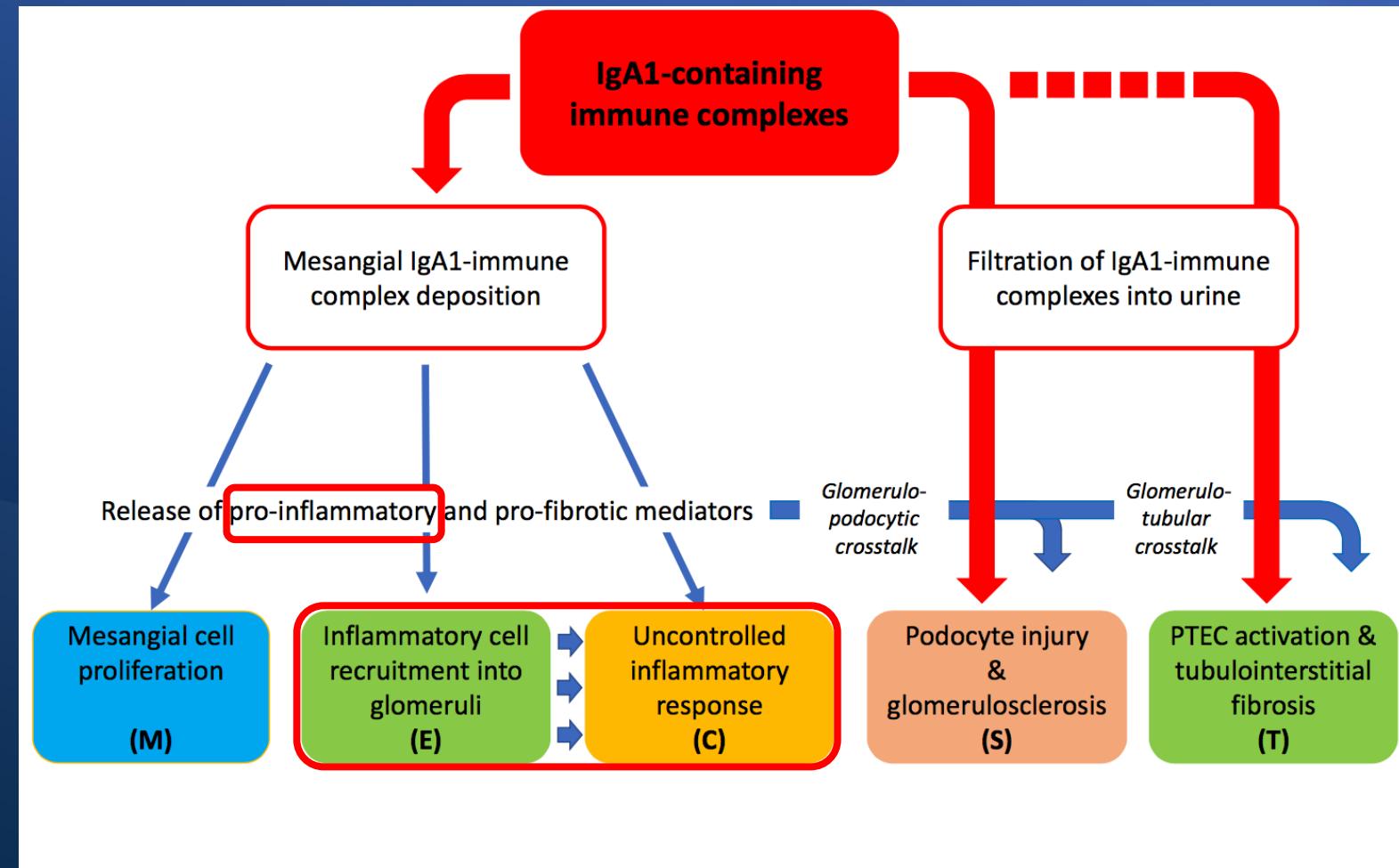


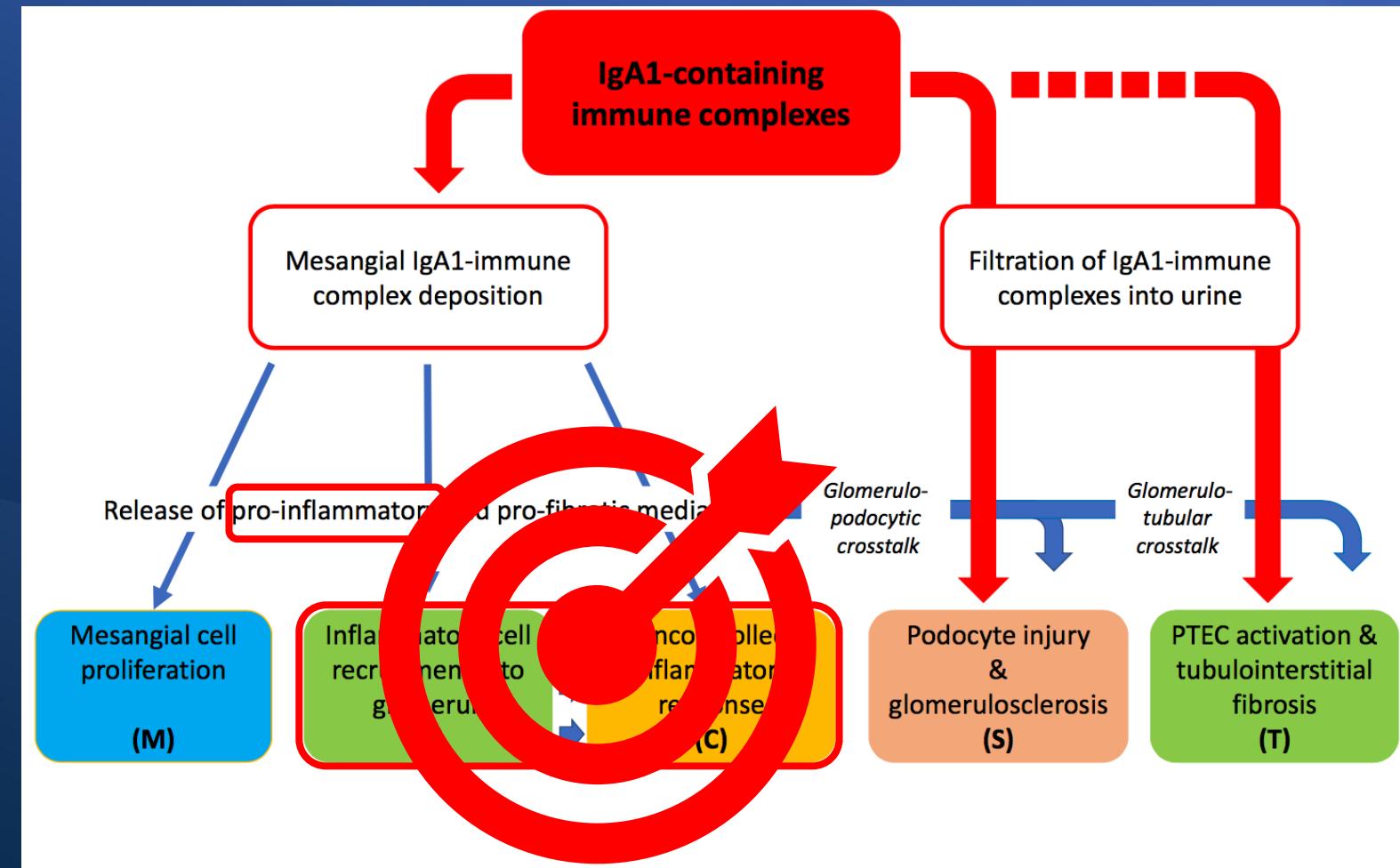


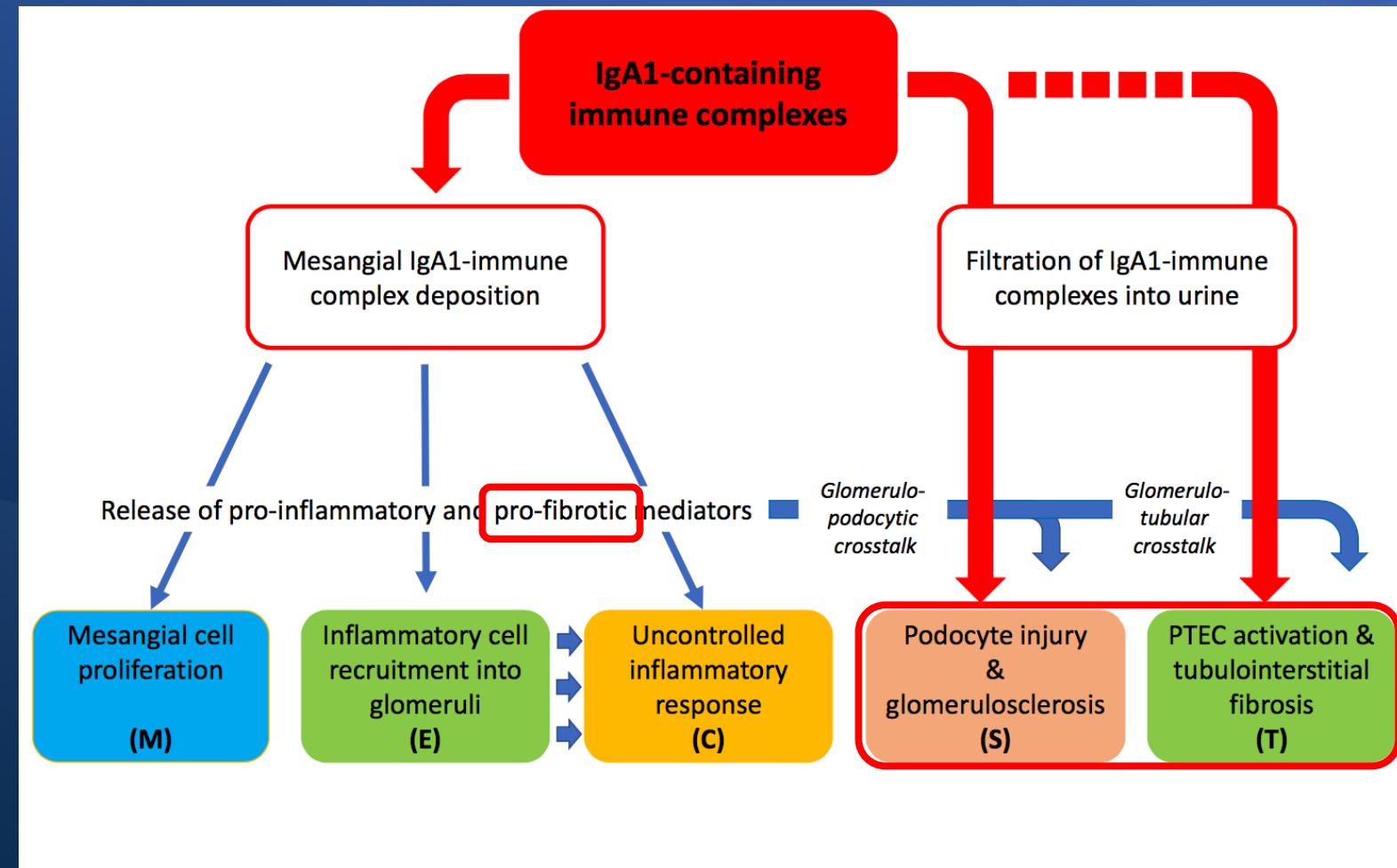


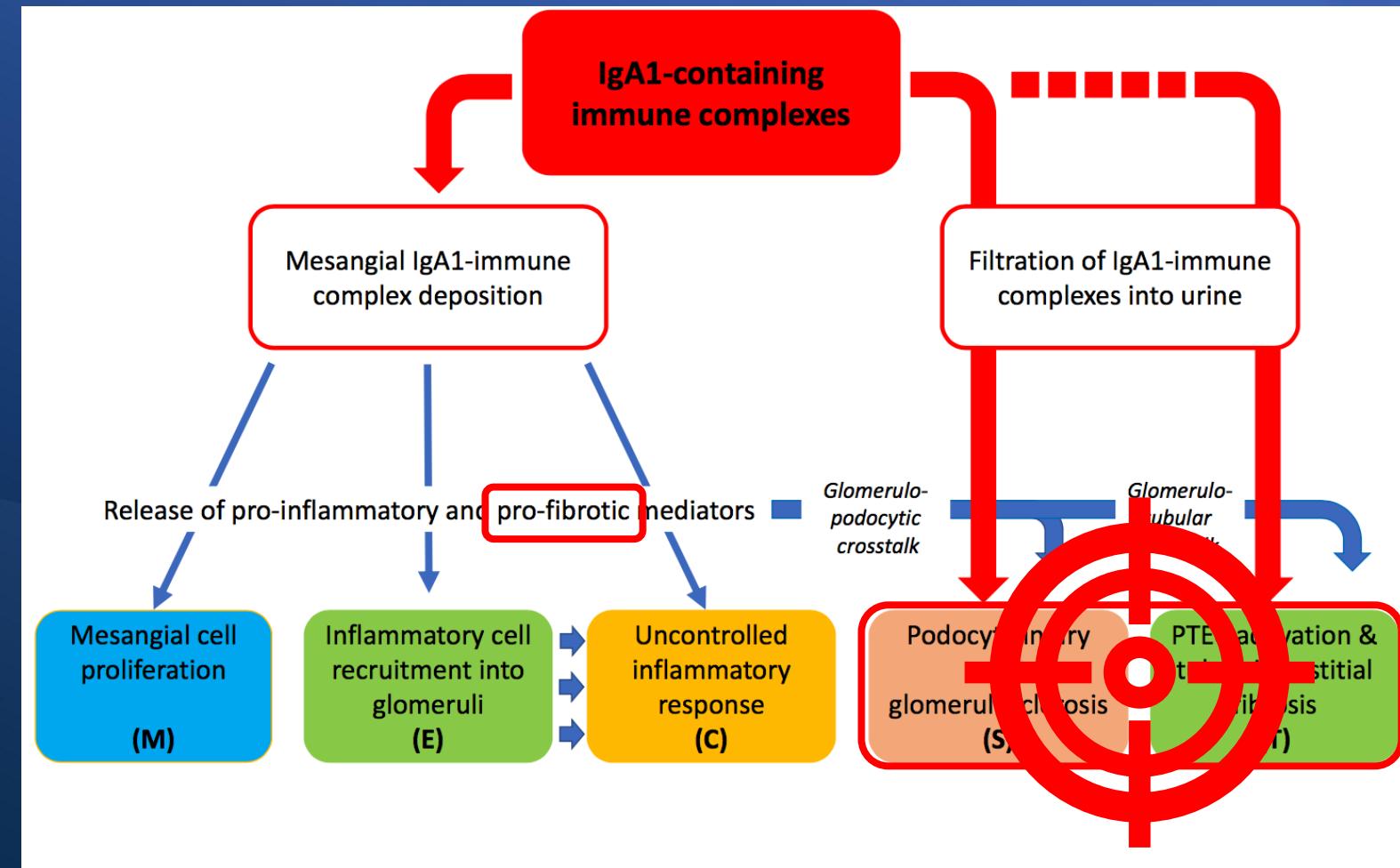


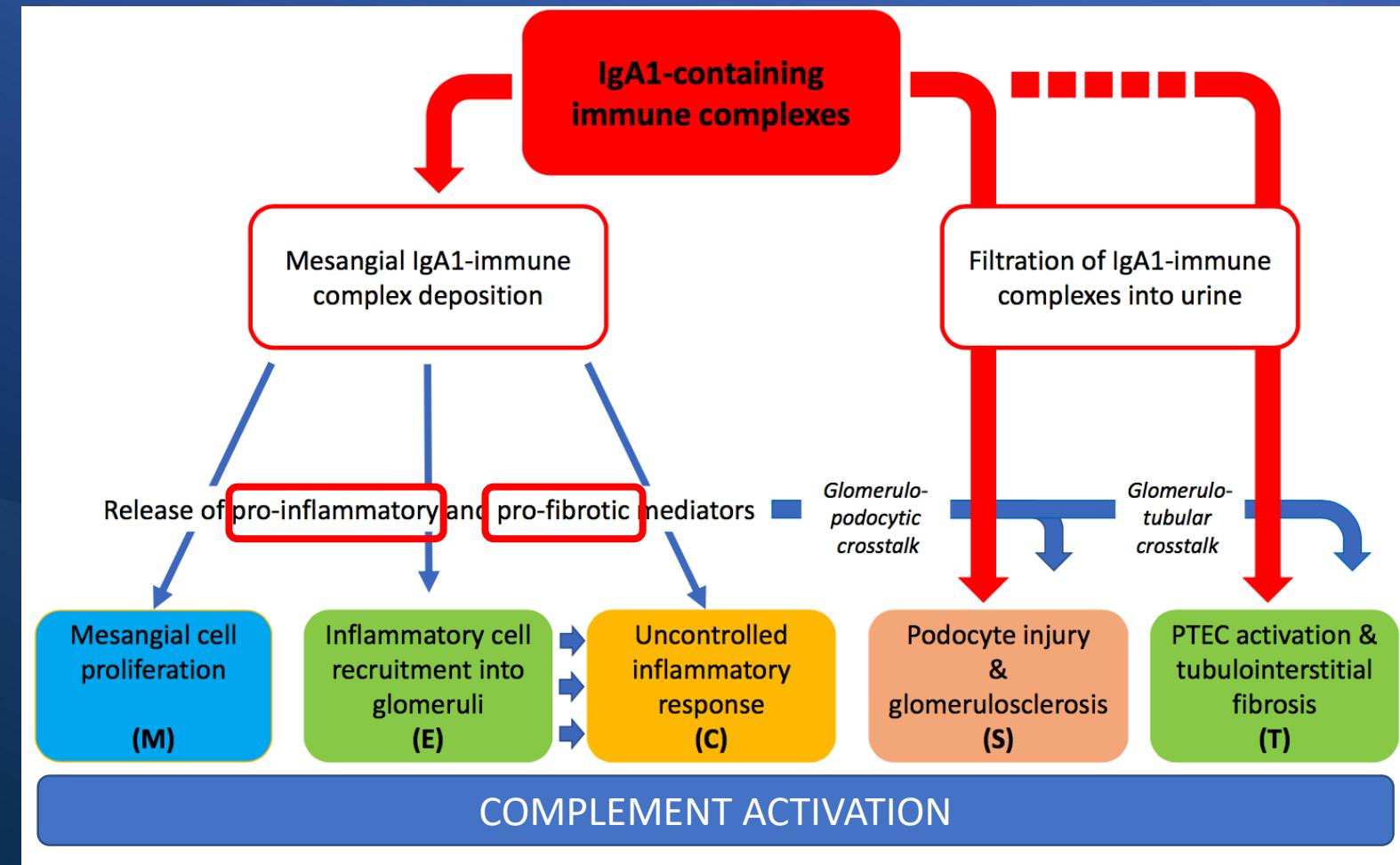


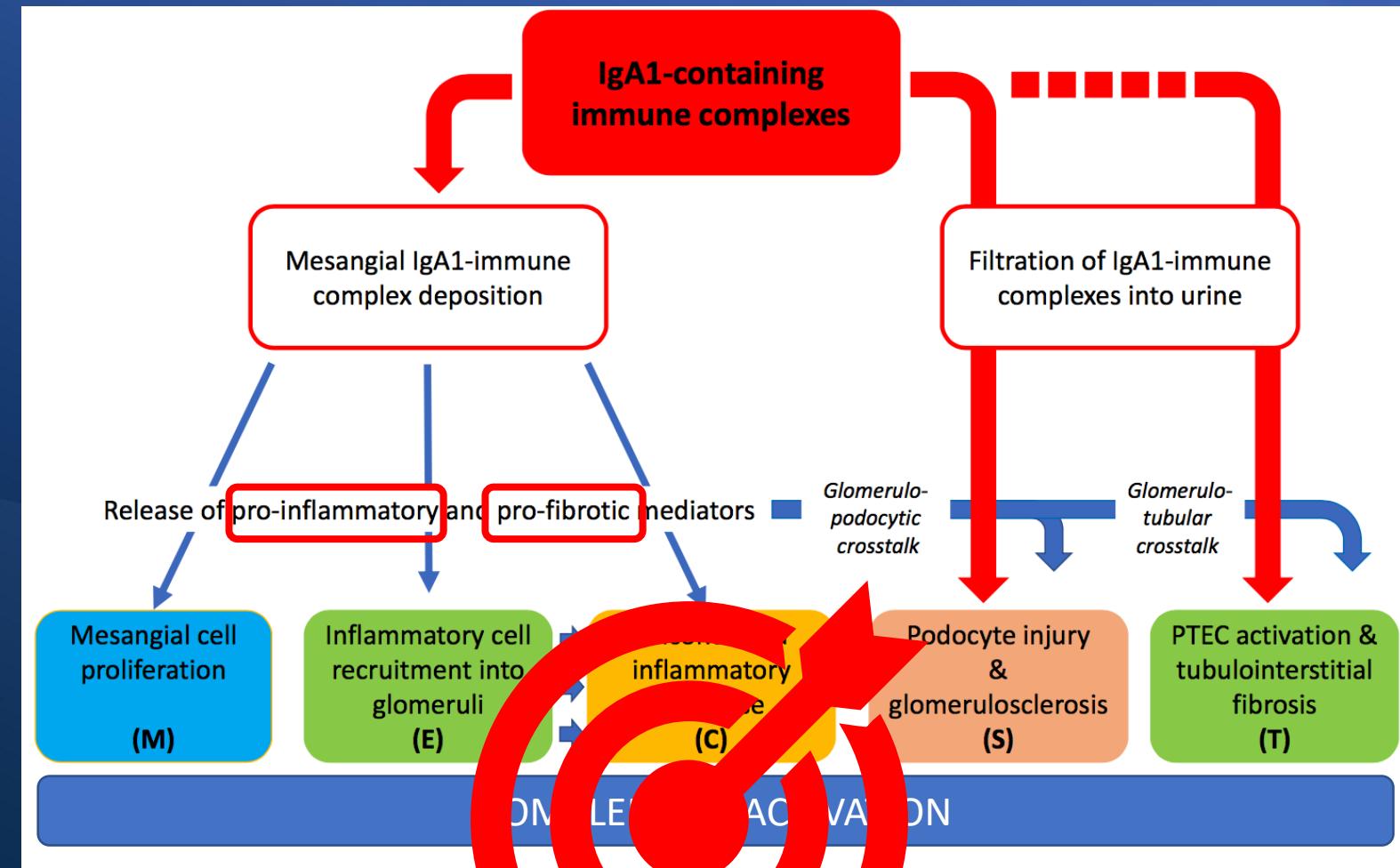


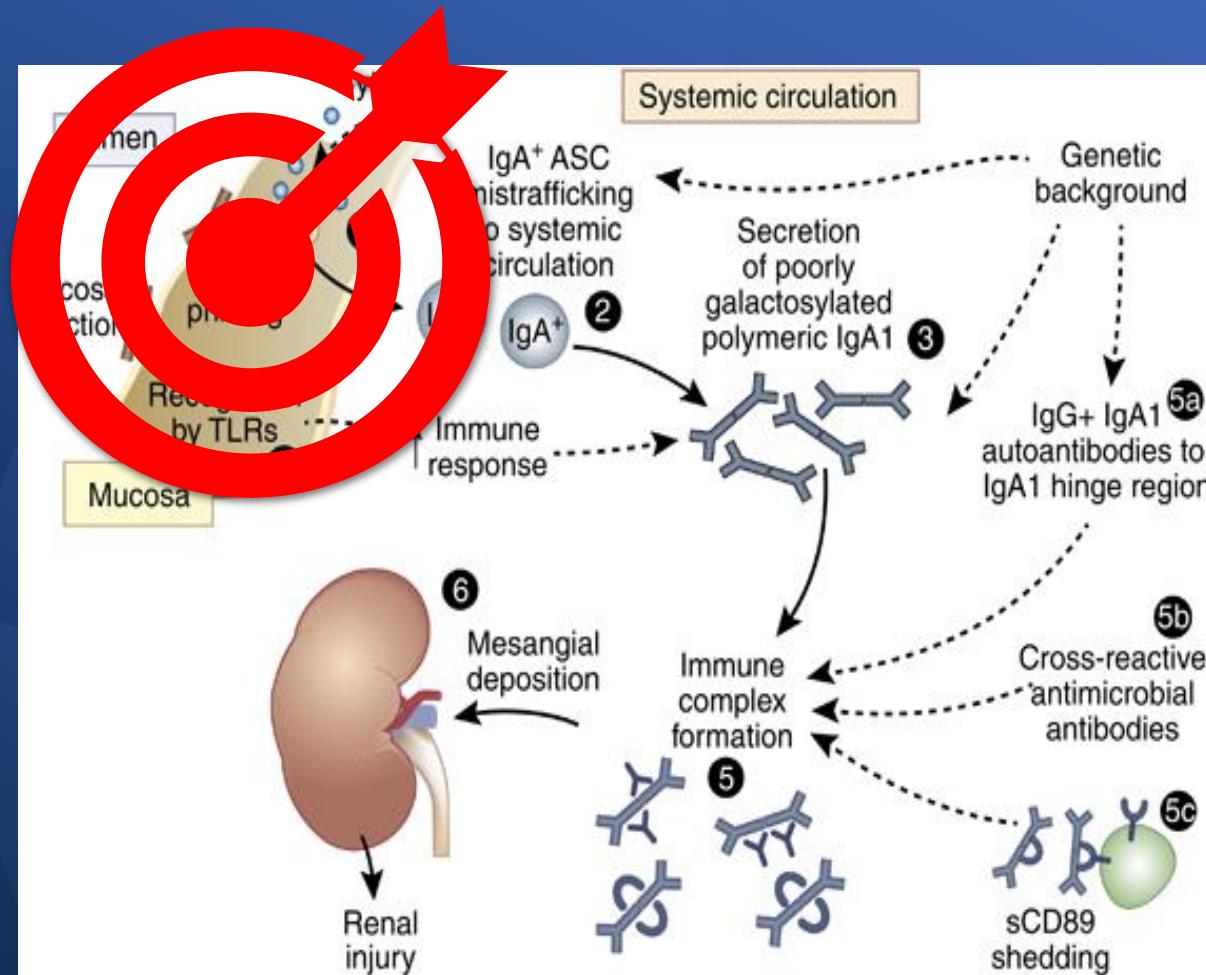












Effects of nefcon on Hits 1, 2, and 3 of the IgAN pathogenic cascade: a full NeflgArd analysis

J. KHAN¹, N. NAWAZ¹, A.A.A. JAMA¹, W.A. BARRATT¹, R.C. THOMAS¹, R. JONES², and J. BARRATT¹
¹College of Life Sciences, University of Leicester, Leicester, UK; ²Caliditas Therapeutics AB, Stockholm, Sweden

INTRODUCTION

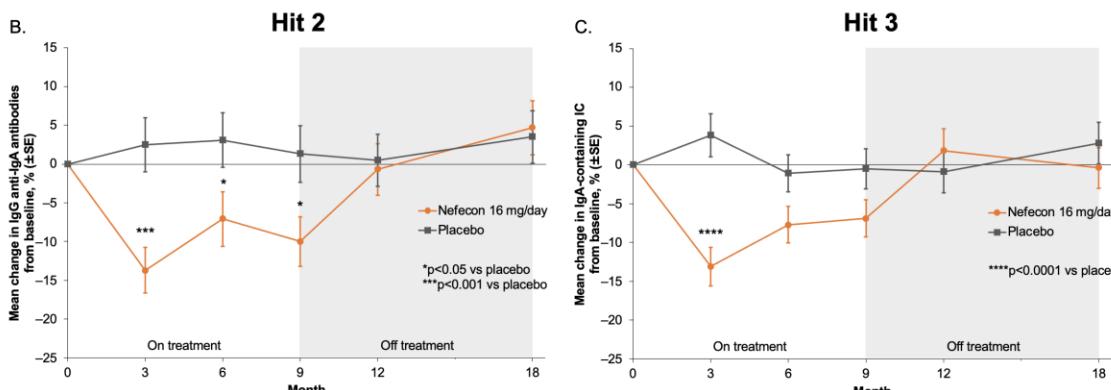
IgAN follows a multihit model: elevated Gd-IgA1 (**Hit 1**) levels trigger IgA and IgG autoantibody production (**Hit 2**), leading to the formation of IgA-IC (**Hit 3**), which deposits in the mesangium, causing inflammation and injury.¹ GALT is the main site for Gd-IgA1 production. The NeflgArd clinical trial, which investigated nefcon (a gut-targeted budesonide formulation), showed eGFR stabilization during 9 months of treatment and durable proteinuria reduction vs placebo.²

AIM

To assess the changes in markers of Hits 1, 2, and 3 of the IgAN pathogenic cascade with nefcon in patients from the Phase 3 clinical trial at different exploratory time points.

METHOD

- In the NeflgArd trial (NCT0364396), patients received 9 months of treatment with either placebo or nefcon 16 mg/day, before entering a 15-month off-drug observational period
- Gd-IgA1, IgG anti-IgA autoantibody, and IgA-IC levels in 216 consenting NeflgArd participants (n=108 per group) were measured using serum samples collected at baseline, 3, 6, 9, 12, and 18 months
- Gd-IgA1 levels were assessed using a commercial assay, and IgG anti-IgA autoantibody and IgA-IC levels using in-house sandwich ELISAs


ABBREVIATIONS

eGFR, estimated glomerular filtration rate; ELISA, enzyme-linked immunosorbent assay; GALT, gut-associated lymphoid tissue; Gd-IgA1, galactose-deficient IgA1; IgA, immunoglobulin A; IgA-IC, IgA-containing immune complex; IgAN, immunoglobulin A nephropathy; IgG, immunoglobulin G; SE, standard error.

RESULTS

Figure: Relative changes from baseline over time for (A) Gd-IgA1 (Hit 1), (B) IgG anti-IgA autoantibodies (Hit 2), and (C) IgA-ICs (Hit 3), using robust regression with multiple imputations.

- Significant reductions in Gd-IgA1 levels were seen with nefcon vs placebo, showing the efficacy of nefcon in addressing Hit 1 of IgAN pathogenesis
- IgG anti-IgA autoantibodies were also reduced significantly with nefcon, tackling Hit 2 of IgAN pathogenesis
- As a result, we also observed a significant reduction in IgA-ICs (Hit 3 of the IgAN pathogenesis) with nefcon

CONCLUSIONS

- Nefcon 16 mg/day was the first fully approved treatment for IgAN based on the Phase 3 NeflgArd trial findings
- The 18-month NeflgArd biomarker data represent the complete analysis of the effects of the drug on the IgAN pathogenic cascade, showing clear reductions in markers of Hits 1, 2, and 3, compared with standard of care alone
- These findings, coupled with other previously published data, demonstrate that nefcon has a direct disease-modifying effect in IgAN

ACKNOWLEDGMENTS

We would like to thank the patients and their families, as well as the teams of healthcare professionals and academics involved in this work, without whom none of it would be possible.

Editorial assistance was provided by Geraint Owens and Toby Galbraith of HCG, UK, with financial support from Caliditas Therapeutics and was conducted in accordance with Good Publication Practice (GPP) guidelines.

DISCLOSURES

J. Barratt is a consultant to Caliditas Therapeutics and reports grants and consultancy and personal fees from Caliditas Therapeutics, Everest Medicines, and STADA Arzneimittel. R. Jones is an employee of Caliditas Therapeutics. I. Khan, N. Nawaz, A.A.A. Jama, W.A. Barratt, and R.C. Thomas have nothing to disclose.

REFERENCES

- Cheung CK et al. The pathogenesis of IgA nephropathy and implications for treatment. *Nat Rev Nephrol* 2025; 21: 9-23.
- Lafayette R et al. NeflgArd trial investigators. Efficacy and safety of a targeted-release formulation of budesonide in patients with primary IgA nephropathy (NeflgArd): 2-year results from a randomised phase 3 trial. *Lancet* 2023; 402: 859-870.

CONTACT INFORMATION

Please contact Róisín Thomas at rct21@leicester.ac.uk for more information.

Articles

Efficacy and safety of a targeted-release formulation of budesonide in patients with primary IgA nephropathy (NeflgArd): 2-year results from a randomised phase 3 trial

Richard Lafayete, Jens Kristensen, Andrew Stone, Jürgen Fliege, Vladimir Tesal, Hernán Trimbach, Hong Zhang, Necmi Erer, Alexander Palige, Heather N Reidy, Brad H Rovin, Jonathan Barrett, on behalf of the NeflgArd trial investigators

Summary

Background IgA nephropathy is a chronic immune-mediated kidney disease and a major cause of kidney failure worldwide. The gut mucosal immune system is implicated in its pathogenesis, and Nefcon is a novel, oral, targeted-release formulation of budesonide designed to act at the gut mucosal level. We present findings from the 2-year, phase 3 NeflgArd trial of Nefcon in patients with IgA nephropathy.

Methods In this phase 3, multicentre, randomised, double-blind, placebo-controlled trial, adult patients (aged ≥ 18 years) with primary IgA nephropathy, estimated glomerular filtration rate (eGFR) $35-90$ mL/min per 1.73 m 2 , and persistent proteinuria (urine protein:creatinine ratio ≥ 0.8 g/g or proteinuria ≥ 1 g/24 h) despite optimised renin-angiotensin system blockade were enrolled at 132 hospital-based clinical sites in 20 countries worldwide. Patients were randomly assigned (1:1) to receive 16 mg/day oral capsules of Nefcon or matching placebo for 9 months, followed by a 15-month observational follow-up period after study drug. Randomisation via an interactive response technology system was stratified according to baseline proteinuria (<2 or ≥ 2 g/24 h), baseline eGFR (<60 or ≥ 60 mL/min per 1.73 m 2), and region (Asia/Pacific, North America, or South America). Patients, investigators, and site staff were masked to treatment assignment throughout the 2-year trial. Optimised supportive care was also continued throughout the trial. The primary efficacy endpoint was time-weighted average of eGFR over 2 years. Efficacy and safety analyses were done in the full analysis set (ie, all randomly assigned patients). The trial was registered on ClinicalTrials.gov, NCT03643595, and is completed.

Findings Patients were recruited to the NeflgArd trial between Sept 5, 2018, and Jan 20, 2021, with 364 patients (182 per treatment group) randomly assigned in the full analysis set. 240 (66%) patients were men and 124 (34%) were women, and 275 (76%) identified as White. The time-weighted average of eGFR over 2 years showed a statistically significant treatment benefit with Nefcon versus placebo (difference 5.05 mL/min per 1.73 m 2 [95% CI 3.2–24.7; p=0.0001]), with a time-weighted average change of -2.47 mL/min per 1.73 m 2 (95% CI -3.38 to -1.6) reported with Nefcon and -7.52 mL/min per 1.73 m 2 (-8.33 to -6.18) reported with placebo. The most commonly reported treatment-emergent adverse events during treatment with Nefcon were peripheral oedema (31 [17%] patients, vs placebo, seven [4%] patients), hypertension (22 [12%] vs six [3%]), muscle spasms (22 [12%] vs seven [4%]), acne (20 [11%] vs two [1%]), and headache (19 [10%] vs 14 [8%]). No treatment-related deaths were reported.

Interpretation A 9-month treatment period with Nefcon provided a clinically relevant reduction in eGFR decline and a durable reduction in proteinuria versus placebo, providing support for a disease-modifying effect in patients with IgA nephropathy. Nefcon was also well tolerated, with a safety profile as expected for a locally acting oral budesonide product.

Funding Ciliditas Therapeutics.

Copyright © 2023 Elsevier Ltd. All rights reserved.

Introduction

IgA nephropathy is a chronic immune-mediated kidney disease characterised by IgA deposition in the glomeruli.¹ IgA nephropathy is the most common primary glomerular disease globally and has serious consequences, including reduced life expectancy; most patients with IgA nephropathy are expected to develop proteinuria, and addressing cardiovascular risk.² After supportive care, patients who remain at high risk for progressive chronic kidney disease should be considered for a clinical trial, or for systemic glucocorticoids (if they

Published Online

August 14, 2023

https://doi.org/10.1016/S0140-6736(23)01554-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01533-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01534-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01535-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01536-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01537-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01538-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01539-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01540-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01541-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01542-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01543-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01544-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01545-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01546-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01547-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01548-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01549-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01550-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01551-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01552-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01553-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01554-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01555-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01556-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01557-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01558-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01559-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01560-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01561-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01562-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01563-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01564-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01565-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01566-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01567-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01568-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01569-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01570-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01571-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01572-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01573-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01574-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01575-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01576-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01577-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01578-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01579-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01580-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01581-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01582-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01583-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01584-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01585-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01586-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01587-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01588-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01589-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01590-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01591-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01592-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01593-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01594-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01595-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01596-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01597-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01598-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01599-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01600-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01601-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01602-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01603-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01604-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01605-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01606-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01607-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01608-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01609-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01610-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01611-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01612-0

See Online Comment

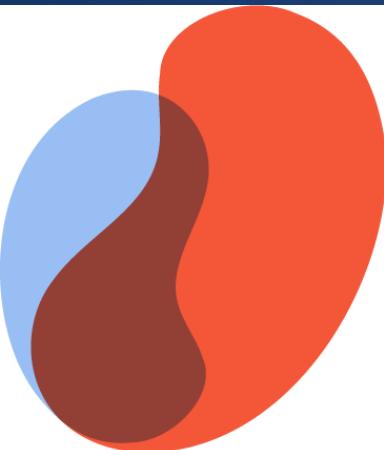
https://doi.org/10.1016/S0140-6736(23)01613-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01614-2

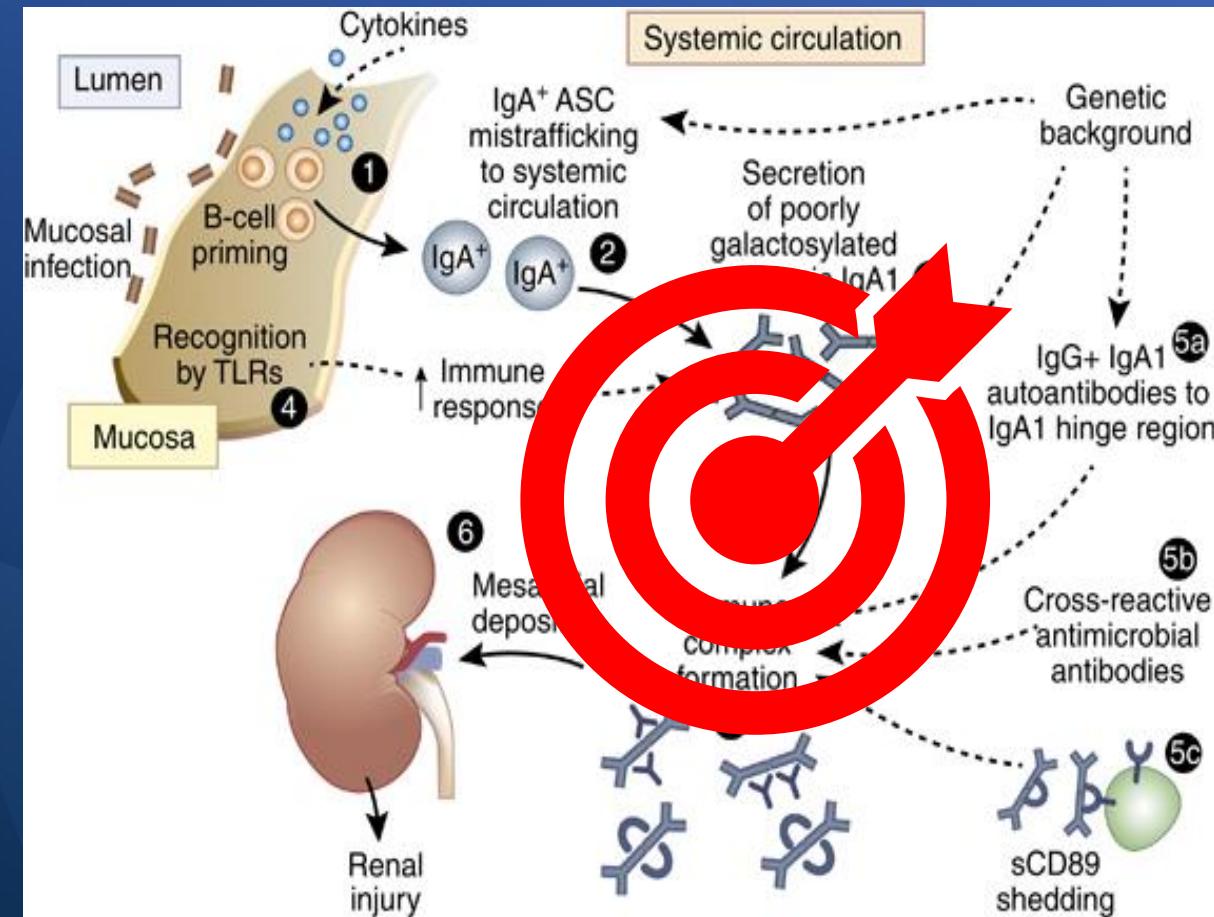
See Online Comment

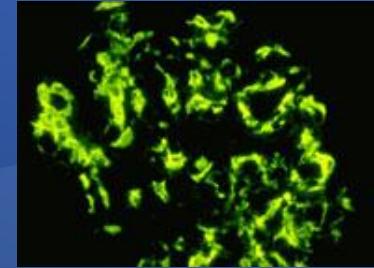
https://doi.org/10.1016/S0140-6736(23)01615-3


See Online Comment

https://doi.org/10.1016/S0140-6736(23)01616-4

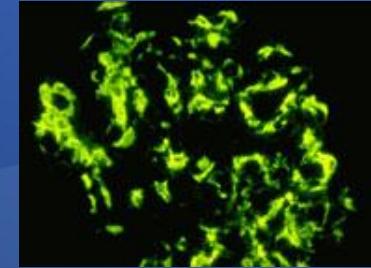
See Online Comment


https://doi.org/10.1016/S0140-6736(23)01617-5


See Online Comment

nefXtend

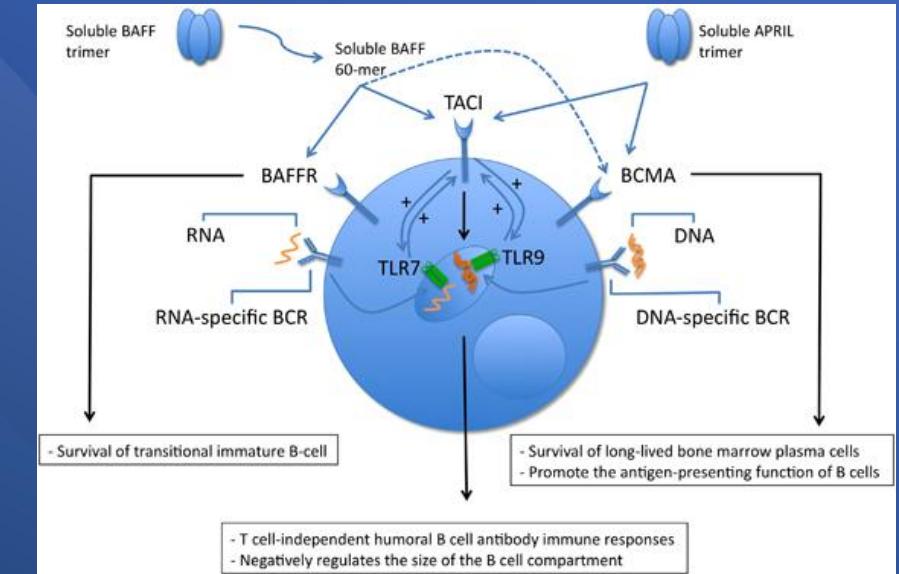
CLINICAL TRIAL

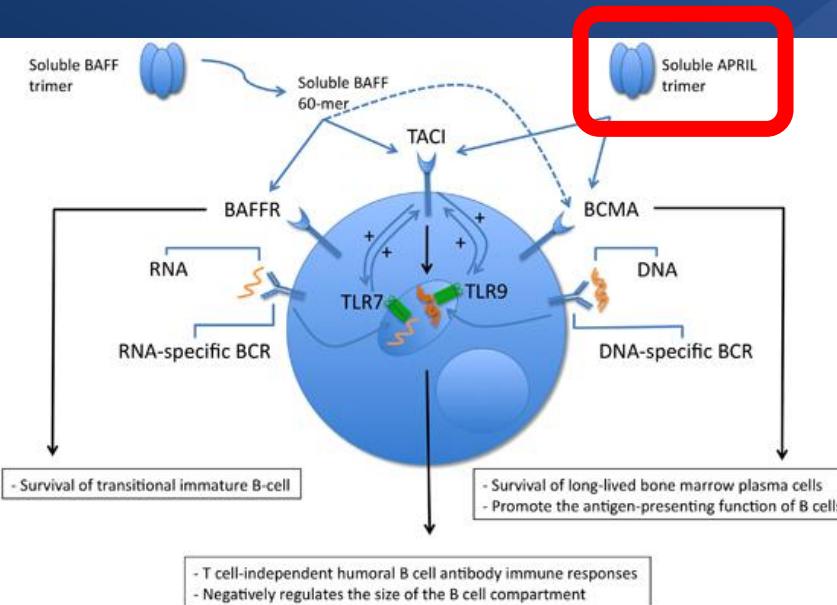


**Pathogenic
IgA
Synthesis
& IgA immune
complex
formation**

B cell depletion

B cell modulation


IgA degraders


Pathogenic IgA Synthesis & IgA immune complex formation

B cell depletion

IgA degraders

B cell modulation

ACTIVE, NOT RECRUITING [i](#)

Visionary Study: Phase 3 Trial of Sibeprenlimab in Immunoglobulin A Nephropathy (IgAN)

ClinicalTrials.gov ID [i](#) NCT05248646

Sponsor [i](#) Otsuka Pharmaceutical Development & Commercialization, Inc.

Information provided by [i](#) Otsuka Pharmaceutical Development & Commercialization, Inc. (Responsible Party)

Last Update Posted [i](#) 2024-03-26

RECRUITING [i](#)

A Study of BION-1301 in Adults With IgA Nephropathy

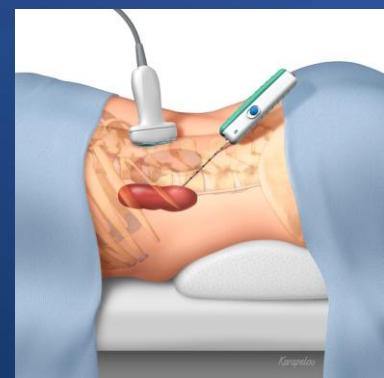
ClinicalTrials.gov ID [i](#) NCT05852938

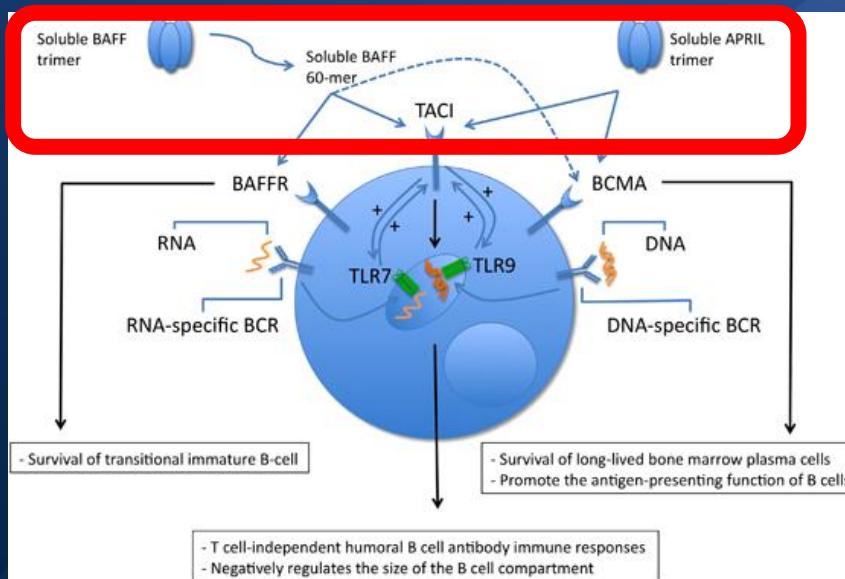
Sponsor [i](#) Chinook Therapeutics, Inc.

Information provided by [i](#) Chinook Therapeutics, Inc. (Responsible Party)

Last Update Posted [i](#) 2024-04-19

Recruiting


Trial of the Impact of Sibeprenlimab on Immunoglobulin A Nephropathy Kidney Tissue


[ClinicalTrials.gov ID](#) NCT06740526

Sponsor Otsuka Pharmaceutical Development & Commercialization, Inc.

Information provided by Otsuka Pharmaceutical Development & Commercialization, Inc. (Responsible Party)

Last Update Posted 2025-04-06

RECRUITING

Atacicept in Subjects With IgA Nephropathy (ORIGIN 3)

ClinicalTrials.gov ID NCT04716231

Sponsor Vera Therapeutics, Inc.

Information provided by Vera Therapeutics, Inc. (Responsible Party)

Last Update Posted 2023-11-29

RECRUITING

A Study of Telitacicept in Patients With Primary IgA Nephropathy

ClinicalTrials.gov ID NCT05799287

Sponsor RemeGen Co., Ltd.

Information provided by RemeGen Co., Ltd. (Responsible Party)

Last Update Posted 2023-09-06

Recruiting

Evaluation of Efficacy of Povetacicept in Adults With Immunoglobulin A Nephropathy (IgAN)

ClinicalTrials.gov ID NCT06564142

Sponsor Alpine Immune Sciences Inc, A Subsidiary of Vertex

Information provided by Alpine Immune Sciences, Inc. (Alpine Immune Sciences Inc, A Subsidiary of Vertex) (Responsible Party)

Last Update Posted 2024-12-05

Population 1

Expanded IgAN populations*

- Adults with biopsy-proven IgAN or IgAVN
 - Minimum eGFR 20 mL/min/1.73m²
 - Minimum UPCR 0.5 g/g
- Children (age 10 to <18 y) with biopsy-proven IgAN or IgAVN (UPCR \geq 1 g/g)
- Adults with recurrent IgAN post-transplant

Population 2

Anti-PLA2R membranous nephropathy

Population 3

Anti-nephrin podocytopathy (MCD/FSGS)

Recruiting i

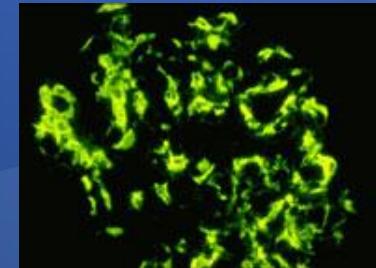
Monthly Dosing of Atacicept in IgAN

ClinicalTrials.gov ID i NCT07020923

Sponsor i Vera Therapeutics, Inc.

Information provided by i Vera Therapeutics, Inc. (Responsible Party)

Last Update Posted i 2025-06-24



**Pathogenic
IgA
Synthesis
& IgA immune
complex
formation**

B cell depletion

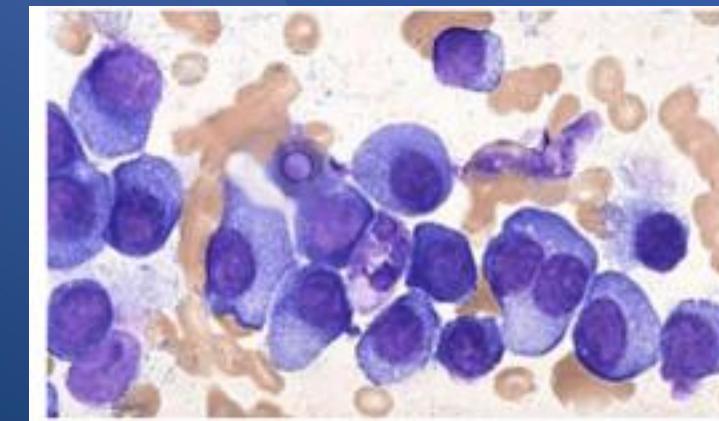
B cell modulation

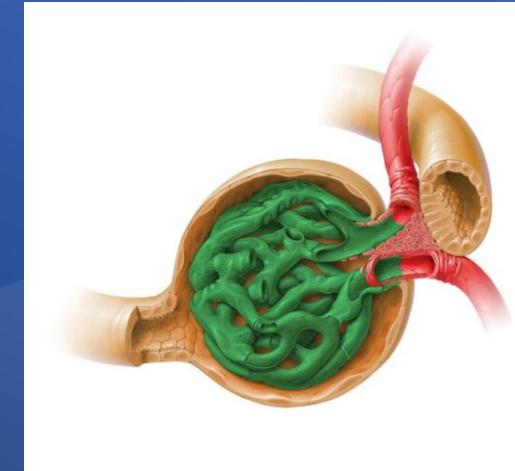
IgA degraders

CLINICAL RESEARCH www.jasn.org

A Randomized, Controlled Trial of Rituximab in IgA Nephropathy with Proteinuria and Renal Dysfunction

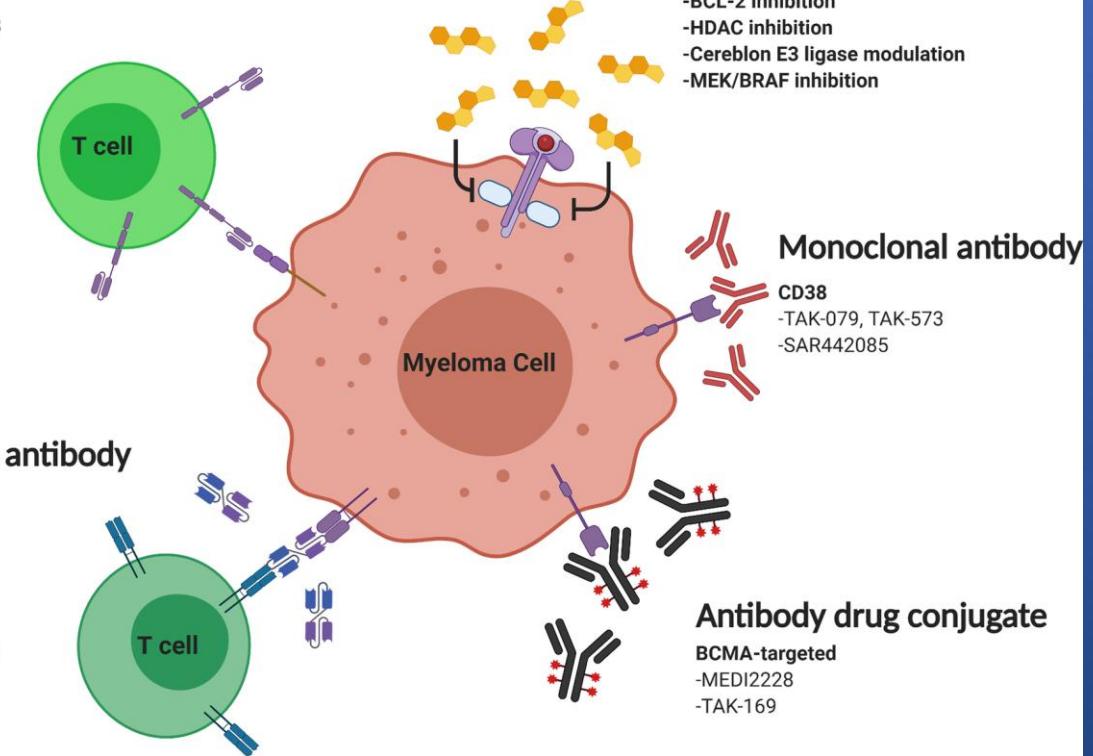
Richard A. Lafayette,* Pietro A. Canetta,† Brad H. Rovin,‡ Gerald B. Appel,† Jan Novak,§
Karl A. Nath,|| Sanjeev Sethi,|| James A. Tumlin,|| Kshama Mehta,* Marie Hogan,||
Stephen Erickson,|| Bruce A. Julian,§,†† Nelson Leung,|| Felicity T. Enders,†† Rhubell Brown,§
Barbora Knoppova,§§§ Stacy Hall,§ and Fernando C. Fervenza||


*Division of Nephrology and Hypertension, Stanford University, Stanford, California; †Division of Nephrology and Hypertension, Columbia University Medical Center, New York, New York; ‡Division of Nephrology, Ohio State University, Columbus, Ohio; Departments of §Microbiology and ||Medicine, University of Alabama at Birmingham, Birmingham, Alabama; ¶Division of Nephrology and Hypertension, ¶Department of Laboratory Medicine and Pathology, and #Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota; **Division of Nephrology, University of Tennessee, Chattanooga, Tennessee; and §§Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic

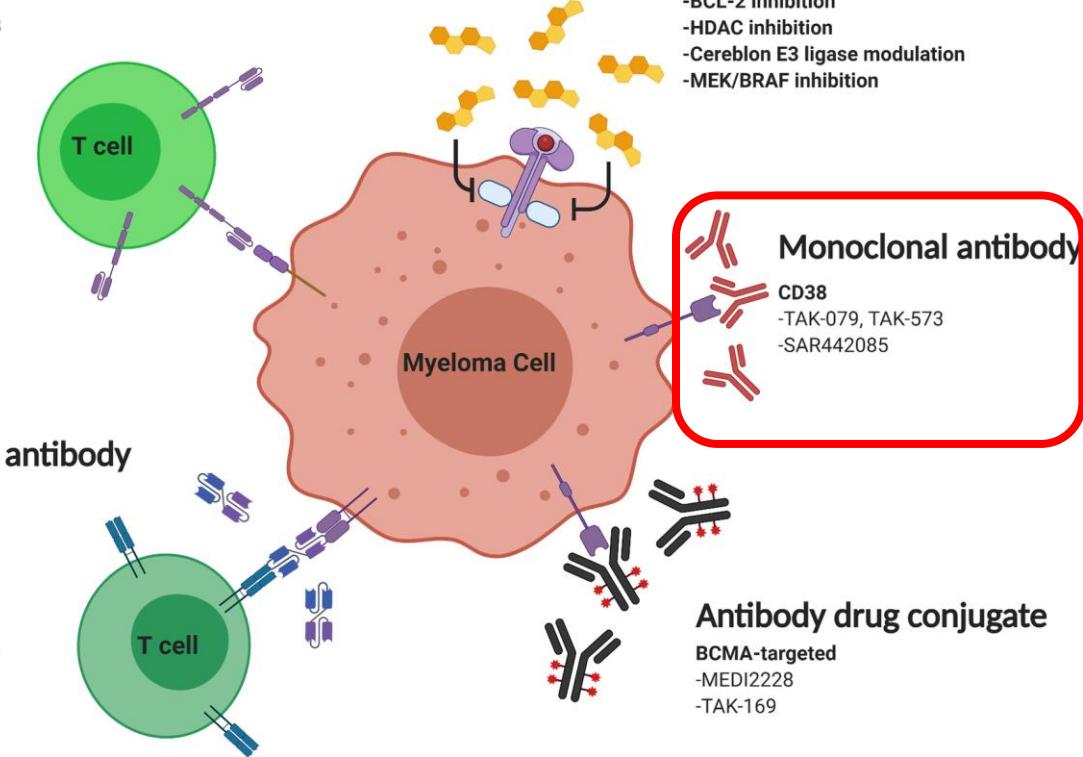

Pathogenic IgA Synthesis & IgA immune complex formation

B cell depletion

B cell modulation


IgA degraders

CAR-T


BCMA
-JNJ-68284528
-bb21217
NY-ESO-1
-GSK3377794
BCMA/CD19
-GC012F
BCMA/CD38
-BM 38CAR
Allogenic
-ALLO-715

CAR-T

BCMA
-JNJ-68284528
-bb21217
NY-ESO-1
-GSK3377794
BCMA/CD19
-GC012F
BCMA/CD38
-BM 38CAR
Allogenic
-ALLO-715

Bispecific antibody

BCMA x CD3
-Teclistamab
-CC-93269
-PF-06863135
-TNB383B
-REGN5458
GPRC5D x CD3
-Talquetamab
FcRH5 x CD3
-BFCR4350A

Small molecule inhibitor

- BCL-2 inhibition
- HDAC inhibition
- Cereblon E3 ligase modulation
- MEK/BRAF inhibition

Monoclonal antibody

CD38
-TAK-079, TAK-573
-SAR442085

Antibody drug conjugate

BCMA-targeted
-MEDI2228
-TAK-169

NCT06935357 Recruiting
A Study to Learn About the Effects of Felzartamab Infusions on Adults With
Immunoglobulin A Nephropathy (IgAN)

Conditions
Immunoglobulin A Nephropathy (IgAN)

Locations

Little Rock, Arkansas, United States	Apple Valley, California, United States
Oxnard, California, United States	San Dimas, California, United States

[Show all 59 locations](#)

NCT06963827 Recruiting
A Study of Mezagitamab in Adults With Primary IgA Nephropathy Kidney
Condition

Conditions
Kidney Disease

Locations

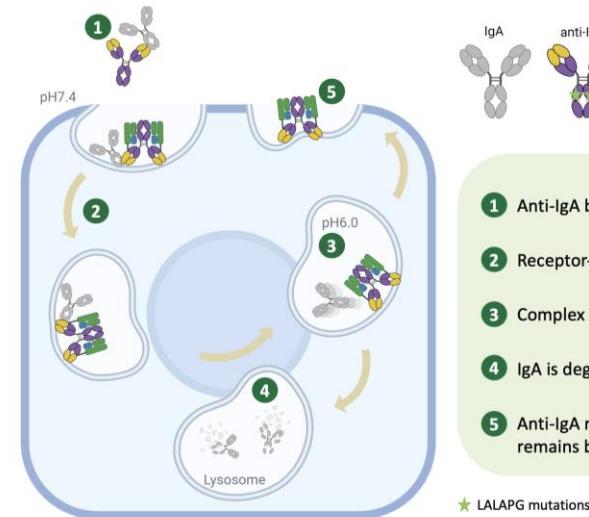
Montgomery, Alabama, United States	Los Angeles, California, United States
Lauderdale Lakes, Florida, United States	Miami, Florida, United States

[Show all 33 locations](#)

PREVAIL

AMIGA
STUDY

**Pathogenic
IgA
Synthesis
& IgA immune
complex
formation**

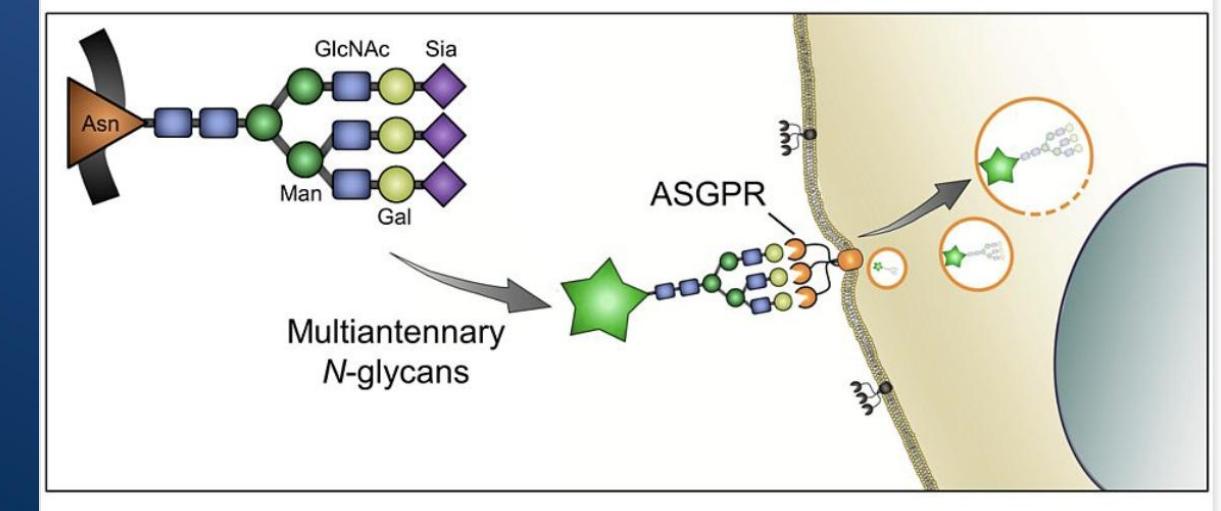

B cell depletion

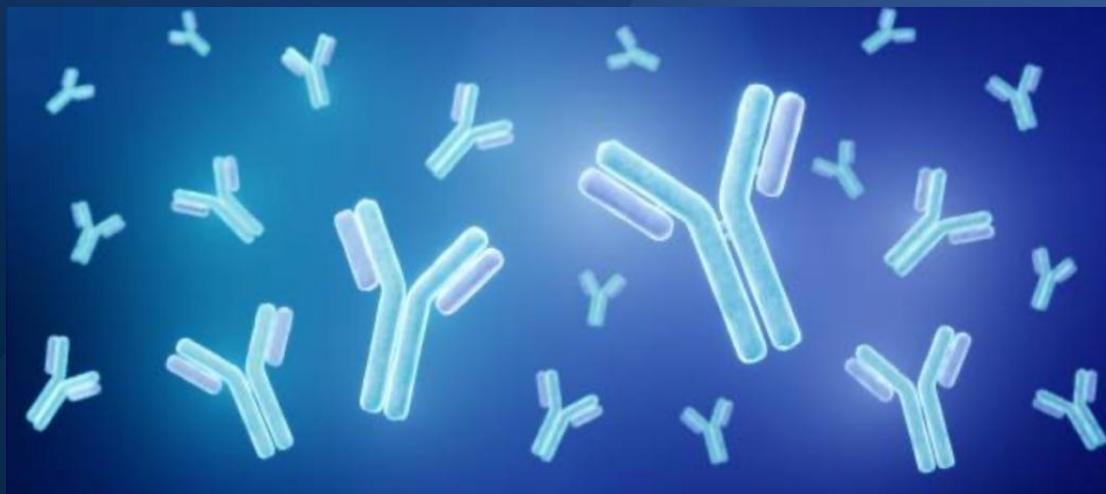
B cell modulation

IgA degraders

Development of a sweeping and blocking anti-IgA antibody *FcRn-mediated removal of circulating IgA*

★ LALAPG mutations to avoid FcγR and C1q binding





biohaven

Biohaven Highlights Portfolio Progress, Innovation, and Anticipated Milestones at the 43rd Annual J.P. Morgan Healthcare Conference; Reports Positive Degrader Data with Rapid, Deep, and Selective Lowering of Galactose-Deficient IgA1 with Next Generation Potential Therapy for IgA Nephropathy

January 13, 2025

biohaven

Biohaven Highlights Portfolio Progress, Innovation, and Anticipated Milestones at the 43rd Annual J.P. Morgan Healthcare Conference; Reports Positive Degrader Data with Rapid, Deep, and Selective Lowering of Galactose-Deficient IgA1 with Next Generation Potential Therapy for IgA Nephropathy

January 13, 2025

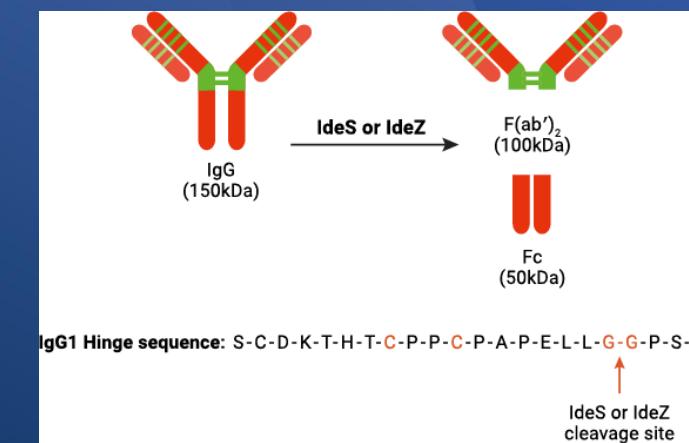
[NCT07054684](#) Recruiting New

Study of BHV-1400 in IgA Nephropathy

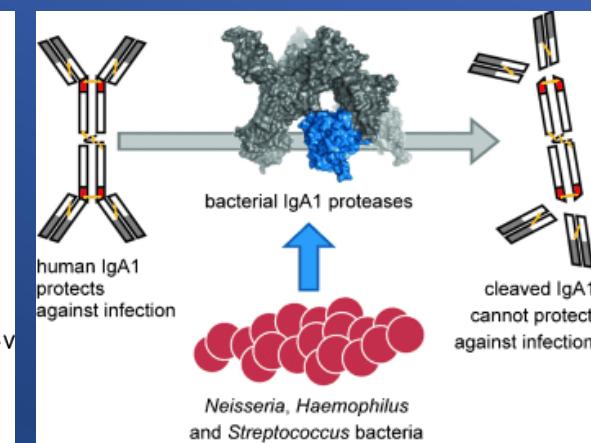
Conditions

IgA Nephropathy

Locations


 Miami Lakes, Florida, United States

 Chesterfield, Missouri, United States


[Show all 5 locations](#)

 Pembroke Pines, Florida, United States

 Dakota Dunes, South Dakota, United States

IgG1 Hinge sequence: S-C-D-K-T-H-T-C-P-P-C-P-A-P-E-L-L-G-G-P-S-V

The NEW ENGLAND JOURNAL OF MEDICINE

ORIGINAL ARTICLE

IgG Endopeptidase in Highly Sensitized Patients Undergoing Transplantation

S.C. Jordan, T. Lorant, J. Choi, C. Kjellman, L. Winstedt, M. Bengtsson, X. Zhang, T. Eich, M. Toyoda, B.-M. Eriksson, S. Ge, A. Peng, S. Järnum, K.J. Wood, T. Lundgren, L. Wennberg, L. Bäckman, E. Larsson, R. Villanueva, J. Kahwaji, S. Louie, A. Kang, M. Haas, C. Nast, A. Vo, and G. Tuveson

ABSTRACT

BACKGROUND

Donor-specific antibodies create an immunologic barrier to transplantation. Current therapies to modify donor-specific antibodies are limited and ineffective in the most highly HLA-sensitized patients. The IgG-degrading enzyme derived from *Streptococcus pyogenes* (Igdes), an endopeptidase, cleaves human IgG into F(ab')₂ and Fc fragments. Igdes has been shown to reduce alloimmunization and HLA-dependent cellular cytotoxicity, which suggests that Igdes might be useful for desensitization. We report on the combined experience of two independently performed open-label, phase 1-2 trials (conducted in Sweden and the United States) that assessed the efficacy of Igdes with regard to desensitization and transplantation of a kidney from an HLA-incompatible donor.

METHODS

We administered Igdes to 25 highly HLA-sensitized patients (11 patients in Uppsala or Stockholm, Sweden, and 14 in Los Angeles) before the transplantation of a kidney from an HLA-incompatible donor. Frequent monitoring for adverse events, outcomes, donor-specific antibodies, and renal function was performed, as were renal biopsies. Immunosuppression after transplantation consisted of tacrolimus, mycophenolate mofetil, and glucocorticoids. Patients in the U.S. study also received intravenous immunoglobulin and rituximab after transplantation to prevent antibody rebound.

RESULTS

Recipients in the U.S. study had a significantly longer cold ischemia time (the time elapsed between procurement of the organ and transplantation), a significantly higher rate of delayed graft function, and significantly higher levels of class I donor-specific antibodies than those in the Swedish study. A total of 38 serious adverse events occurred in 15 patients (5 events per patient) as being possibly related to Igdes. An additional 10 patients with IgG and HLA antibodies were transplanted. A total of 24 of 25 patients had perfusion of allografts after transplantation. Anti-HLA-mediated rejection occurred in 10 patients (7 patients in the U.S. study and 3 in the Swedish study) at 2 weeks to 5 months after transplantation; all these patients had a response to treatment. One graft loss, mediated by non-HLA IgM and IgA antibodies, occurred.

CONCLUSIONS

Igdes reduced or eliminated donor-specific antibodies and permitted HLA-incompatible transplantation in 24 of 25 patients. (Funded by Hansa Medical; ClinicalTrials.gov numbers, NCT0224820, NCT0246684, and NCT0247551.)

442

The New England Journal of Medicine is produced by NEJM Group, a division of the Massachusetts Medical Society. Downloaded from nejm.org on January 21, 2015. For personal use only. No other uses without permission. Copyright © 2015 Massachusetts Medical Society. All rights reserved.

IgA1 Protease Treatment Reverses Mesangial Deposits and Hematuria in a Model of IgA Nephropathy

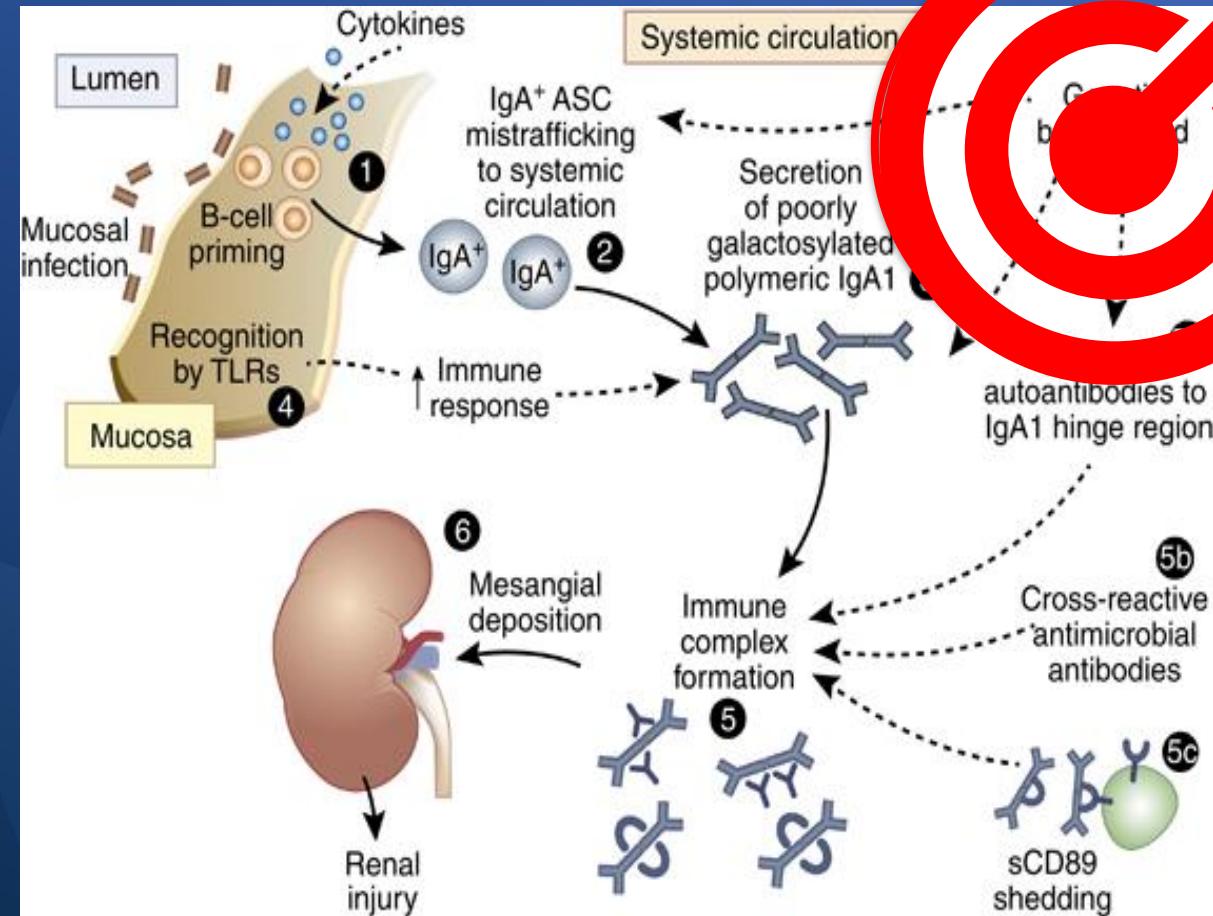
Sebastian M. Lechner,^{*†§} Lilia Abbad,^{*†§} Erwan Boedec,^{*†§} Christina Papista,^{*†§} Marie-Bénédicte Le Stang,^{*†§} Christelle Moal,^{*†§} Julien Maillard,^{*†§} Agnès Jamin,^{*†§} Julie Bex-Coudrat,^{*†§} Yong Wang,[‡] Alain Li,[‡] Paolo G.V. Martin,[‡] Renato C. Monteiro,^{*†§} and Laureline Berthelot^{*†§}

^{*National French Institute of Health and Medical Research (INSERM) Unit 1149, Center of Research on Inflammation, Paris, France; [†]Laboratory of Inflammation Excellence, Faculty of Medicine, Xavier Bichat Site, Paris, France; [‡]Pasteur Diderot University, Sorbonne Paris Cité, Paris, France; [§]National French Center of Scientific Research (CNRS) ERL8252, Paris, France; [‡]Immunobiology, Bioprocess Development and Discovery Biology and Translational Research, Lexington, Massachusetts; and [‡]Immunobiology Department, Bichat Hospital, Paris Public Assistance Hospitals, Department of Hospital and University (DHU) Fire, Paris, France}

ABSTRACT

IgA nephropathy (IgAN), characterized by mesangial IgA1 deposits, is a leading cause of renal failure worldwide. IgAN pathogenesis involves circulating hypogalactosylated IgA1 complexed with soluble IgA Fc receptor I (CD89) and/or anti-IgA1 IgG antibodies. IgA1 is a glycoprotein, and its hypogalactosylation is responsible for IgAN. The absence of IgA1 and CD89 homologs in the mouse has precluded *in vivo* proof-of-concept studies of specific therapies targeting IgA1. However, the *α1K1-CD89Tg* mouse model of IgAN, which expresses human IgA1 and human CD89, allows *in vivo* testing of recombinant IgA1 protease (IgA1-P), a bacterial protein that selectively cleaves IgA1. Mice injected with IgA1-P (1–10 mg/kg) had Fc fragments of IgA1 in both serum and urine, associated with a reduction in IgA1 and IgG1 mesangial deposits. IgA1-P decreased the binding partners of these deposits (CD89, transferrin receptor, and transglutaminase 2) decreased markedly 1 week after treatment, as did the levels of C3 deposition, CD11b⁺ infiltrating cells, and fibronectin. Antiprotease antibodies did not significantly alter IgA1-P activity. Moreover, hematuria consistently decreased after treatment. In conclusion, IgA1-P strongly diminishes human IgA1 mesangial deposits and reduces inflammation, fibrosis, and hematuria in a mouse IgAN model, and therefore may be a plausible treatment for patients with IgAN.

J Am Soc Nephrol 27: 2622–2629, 2016. doi: 10.1681/ASN.2015080656


Received August 4, 2015. Accepted January 4, 2016. Published online ahead of print. Publication date available at www.jasn.org.

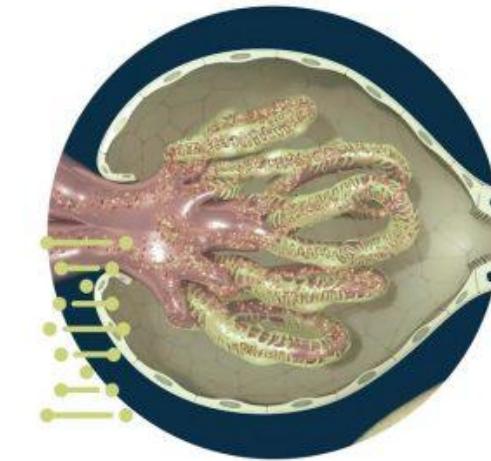
Correspondence: Prof. Renato C. Monteiro and Dr. Laureline Berthelot, Center for Research on Inflammation, National Institute of Health and Medical Research (INSERM) Unit 1149, Faculty of Medicine Paris Diderot, Site Xavier Bichat, 16 Avenue Henri Dunant, 75653 Paris Cedex 13, France. Email: renato.monteiro@inserm.fr; laureline.berthelot@inserm.fr

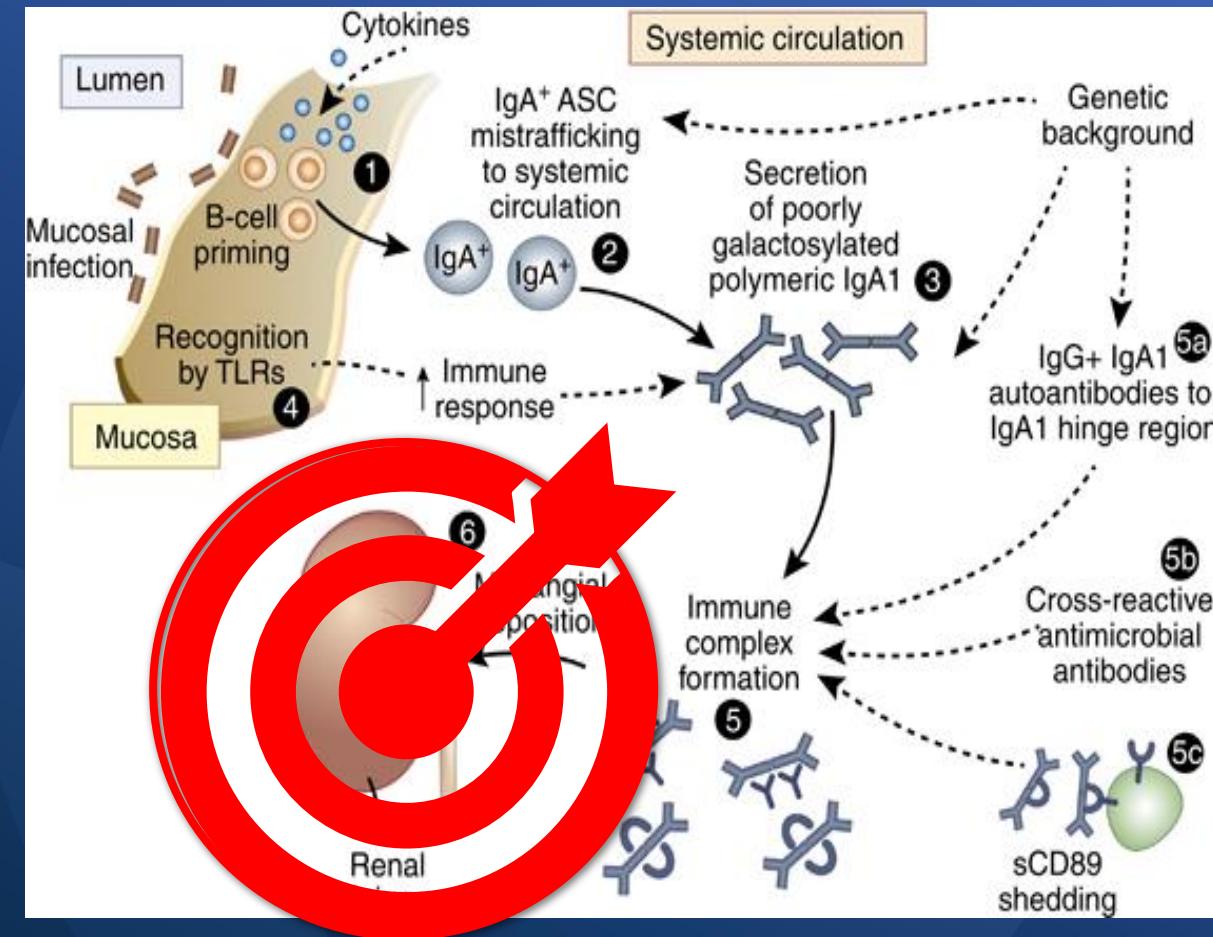
Copyright © 2016 by the American Society of Nephrology

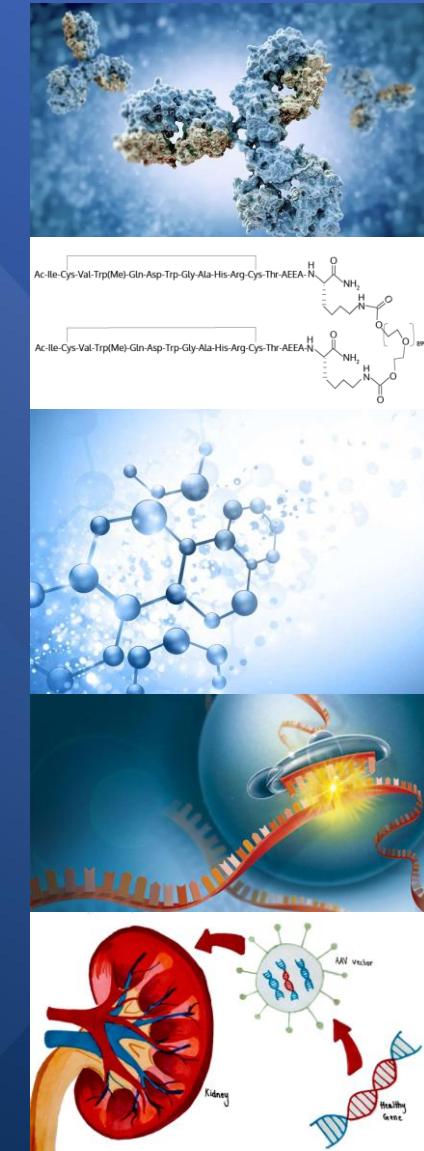
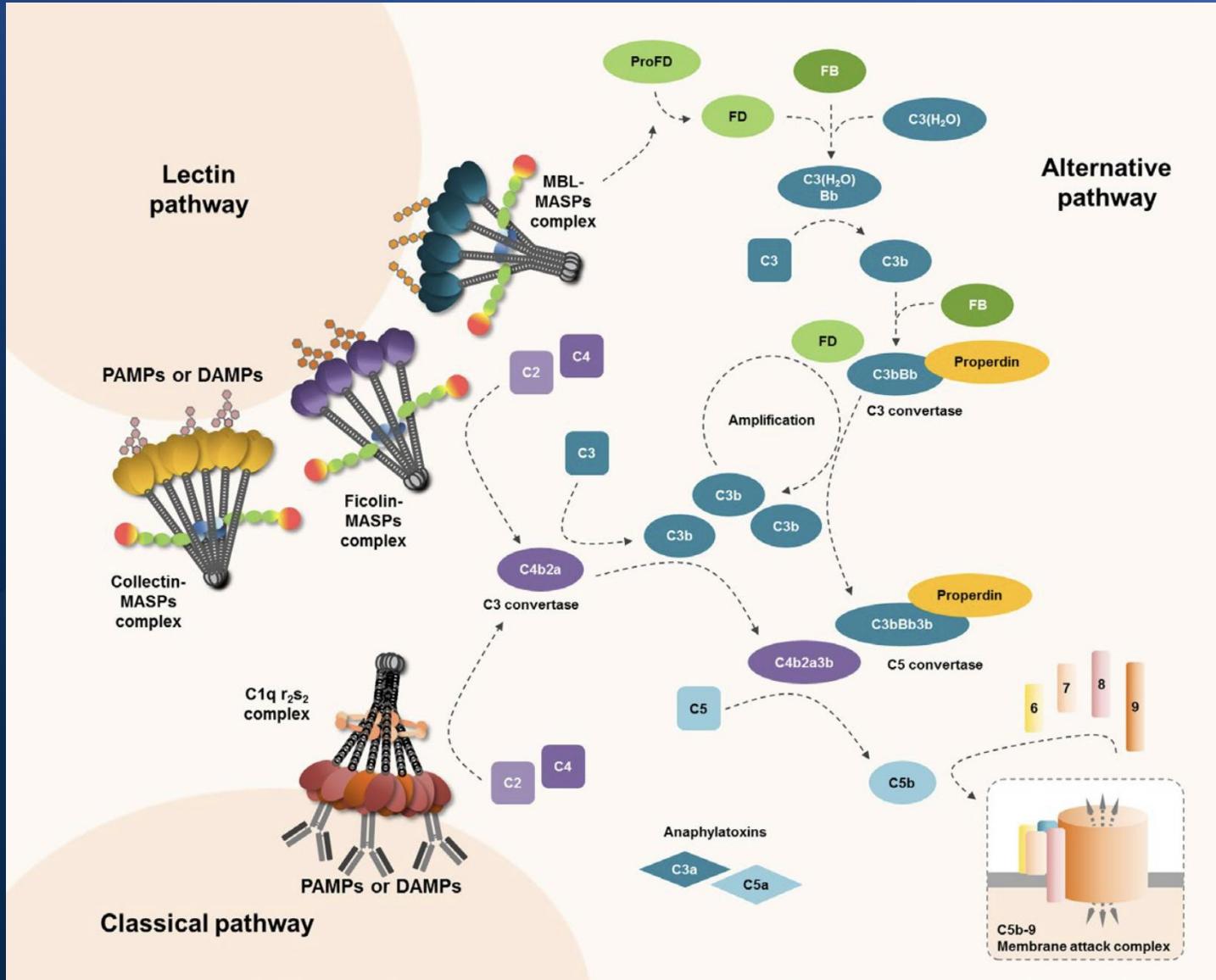
2622 ISSN: 1046-6739/2709-2622

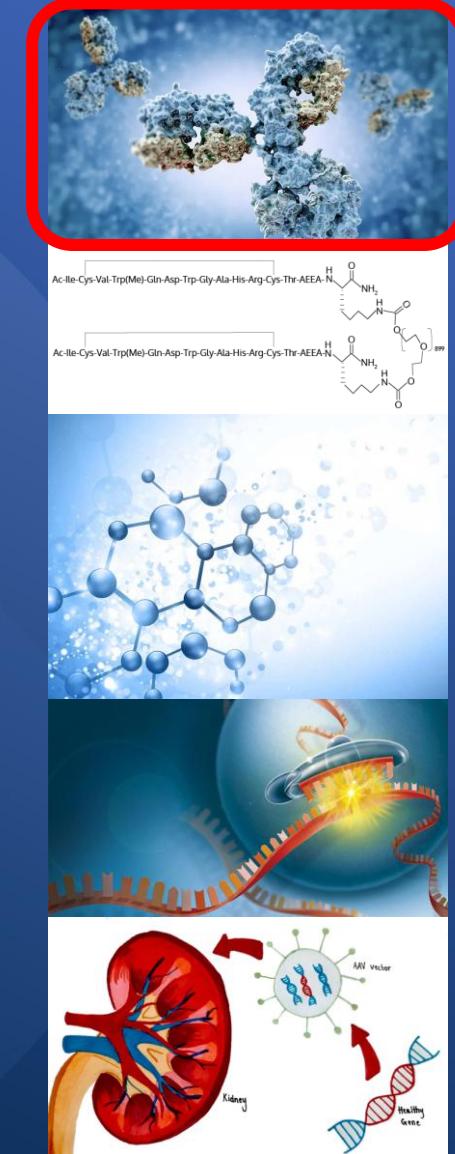
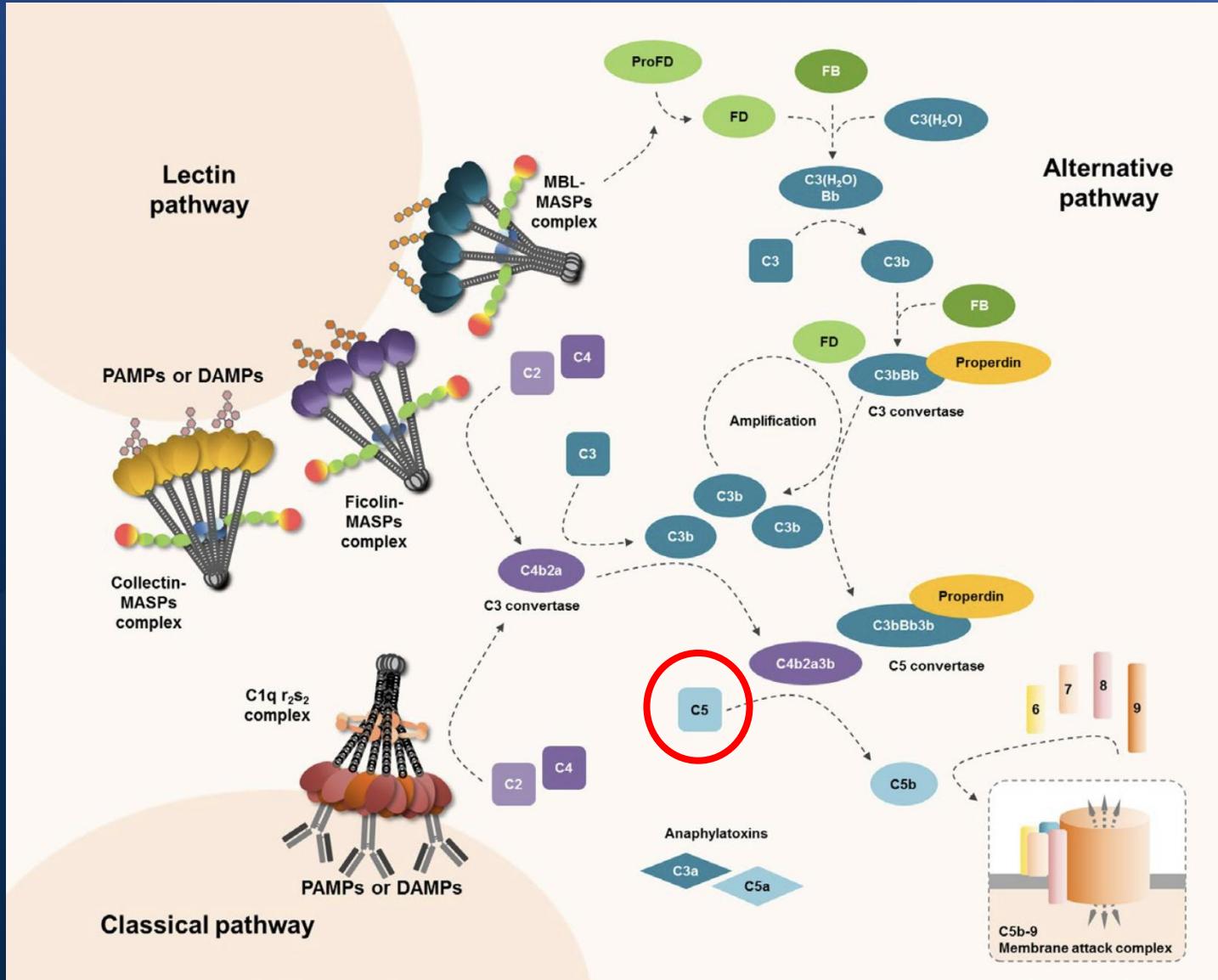
J Am Soc Nephrol 27: 2622–2629, 2016

Not yet recruiting [i](#)


PS-002 for the Treatment of IgA Nephropathy in Adults


ClinicalTrials.gov ID [i](#) NCT07182227



Sponsor [i](#) Purespring Therapeutics Limited



Information provided by [i](#) Purespring Therapeutics Limited (Responsible Party)

Last Update Posted [i](#) 2025-09-19

UNIVERSITY OF
LEICESTER

Clinical Research

Efficacy and Safety of Ravulizumab in IgA Nephropathy
A Phase 2 Randomized Double-Blind Placebo-Controlled Trial

Richard Lafayette,¹ James Tumlin,² Roberta Fenoglio,³ Jessica Kauledt,⁴ Miguel Angel Pérez Valdivia,⁵ Mai-Szu Wu,⁶ Shih-Han Susan Huang,^{6,7} Eric Almazaine,⁸ Sung Gyun Kim,⁹ Min Yer,¹⁰ Andreas Katsifidis,¹⁰ Kara Rice,¹⁰ Katherine Gardo,¹⁰ Jonathan Barratt,¹¹ and the SANCTUARY Study Investigators*

Downloaded from https://jasn.asnjournals.org/ by Browne, Michael on 09/05/2024. Copyright © 2024 American Society of Nephrology. All rights reserved. 10/2024

Key Points

- This phase 2, double-blind, randomized controlled trial evaluated the complement C5 inhibitor, ravulizumab, in adults with IgA nephropathy.
- A 30.1% (90% confidence interval, 13.7% to 43.5%) relative reduction in proteinuria for ravulizumab versus placebo was observed at approximately 6 months.
- Treatment with ravulizumab was well tolerated.

Abstract
Background The complement system plays a central role in the pathogenesis of IgA nephropathy. We present findings from a phase 2 trial of ravulizumab, a complement C5 inhibitor.

Methods The Study of Ravulizumab in Proliferative Lupus Nephritis or IgA Nephropathy (NCT04564339) was a randomized, double-blind, placebo-controlled trial of ravulizumab in addition to standard of care. Adults with IgA nephropathy, proteinuria ≥ 1 g/d, and eGFR ≥ 30 mL/min per 1.73 m², and on stable renin-angiotensin blockade were randomized 2:1 to ravulizumab (intravenous every 8 weeks) or placebo for 26 weeks. From week 26–50, all participants received open-label ravulizumab. The primary end point was percentage change in proteinuria from baseline to week 26. Secondary end points included change in proteinuria at week 50 and eGFR. Safety, pharmacokinetics, and pharmacodynamics were evaluated.

Results Forty-three patients were randomized to ravulizumab and 23 to placebo. At week 26, a statistically significant reduction in proteinuria was observed with ravulizumab versus placebo: -41.9% (95% confidence interval [CI], -50.2% to -32.0%) change in urine protein with ravulizumab and -16.8% (95% CI, -31.8% to 1.6%) change with placebo (30.1% treatment effect; $P = 0.005$). At week 50, there was a -44.8% (95% CI, -55.1% to -32.1%) change from baseline in urine protein with ravulizumab, and in patients who crossed over from placebo to ravulizumab at week 26, the change from baseline (week 0) to week 50 was -45.1% (-58.0% to -28.4%). The least squares mean change in eGFR from baseline to week 26 with ravulizumab was 0.2 (95% CI, -2.3 to 2.7) mL/min per 1.73 m² and with placebo was -4.5 (-7.9 to -1.1) mL/min per 1.73 m². From baseline to week 50, the least squares mean change in eGFR with ravulizumab was -3.9 (95% CI, -6.4 to -1.3) mL/min per 1.73 m², and in patients who crossed over from placebo to ravulizumab at week 26, it was -6.3 (-9.7 to -2.9) mL/min per 1.73 m². Ravulizumab was well tolerated, with an adverse event profile similar to that for placebo.

Conclusions An early, sustained, and clinically meaningful reduction in proteinuria and trend toward stabilization of eGFR were observed with ravulizumab versus placebo. A phase 3 trial (NCT06291376) is enrolling.

Clinical Trial registry name and registration number: Study of Ravulizumab in Proliferative Lupus Nephritis or IgA Nephropathy, NCT04564339.

JASN 00: 1–12, 2024. doi: <https://doi.org/10.1681/ASN.0000000534>


This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Due to the number of contributing authors, the affiliations are listed at the end of this article.

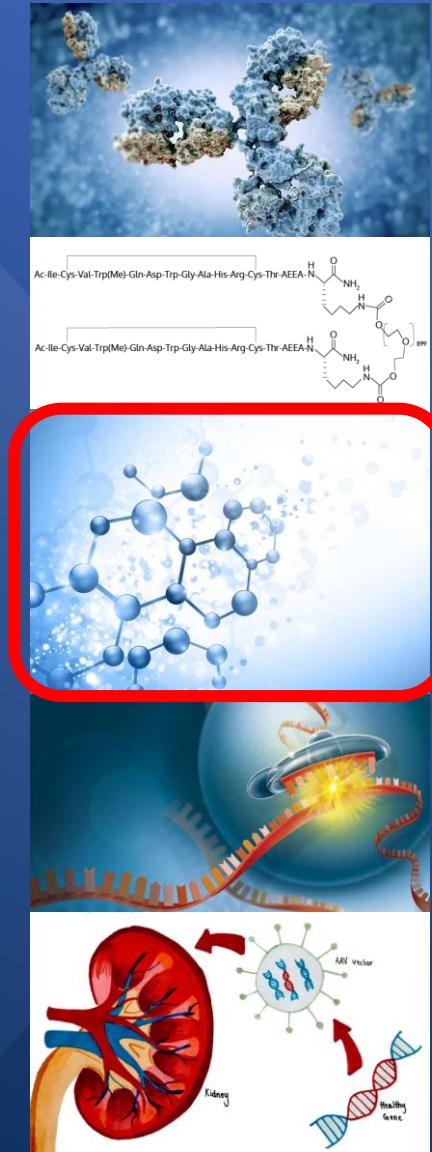
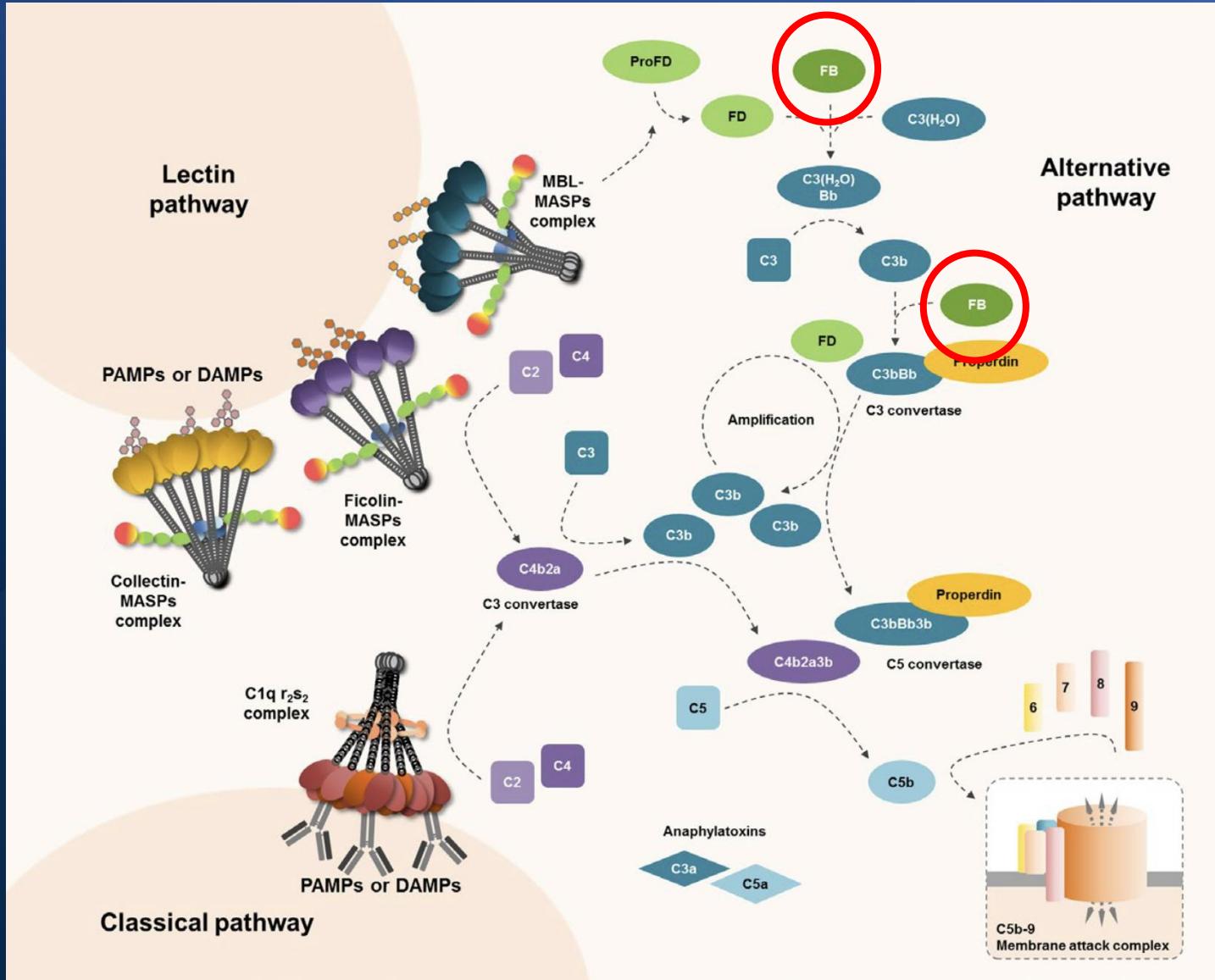
Correspondence: Prof. Jonathan Barratt, email: jb61@leicester.ac.uk

Received: August 28, 2024 Accepted: October 9, 2024
Published Online Ahead of Print: October 25, 2024

*The list of nonauthor contributors is extensive and has been provided in Supplemental Summary 1.

ICAN
CLINICAL STUDY FOR
PATIENTS WITH IgAN

RECRUITING



Study of Ravulizumab in Immunoglobulin A Nephropathy (IgAN) (ICAN)

ClinicalTrials.gov ID NCT06291376

Sponsor Alexion Pharmaceuticals, Inc.

Information provided by Alexion Pharmaceuticals, Inc. (Responsible Party)

Last Update Posted 2024-05-03

A mechanistic biopsy study of the effect of iptacopan on immunopathology in patients with IgA nephropathy (IgAN)

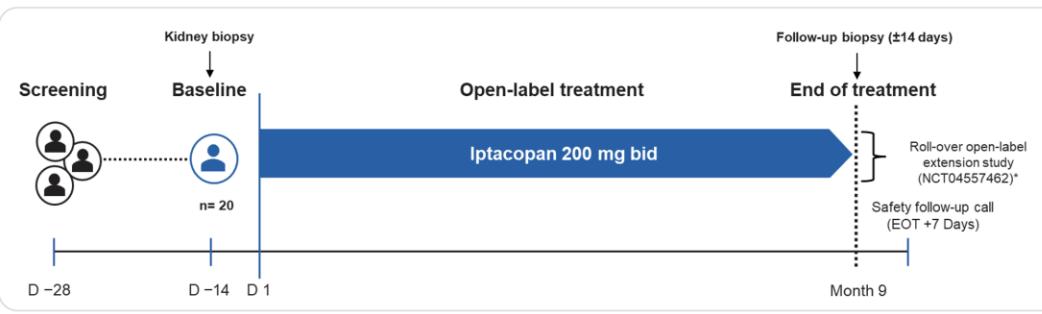
DANA V. RIZK¹, BART MAES², HONG ZHANG³, MATTHIAS KRETZLER⁴, FRANK EITNER⁵, CLINT W. ABNER⁶, MARIE-ANNE VALENTIN⁵, VIPIN N⁷, MARIA FERNANDA DI TATA⁸, JONATHAN BARRATT⁹

¹The University of Alabama at Birmingham, Alabama, United States of America, ²Delta General Hospital, West Flanders, Belgium, ³Peking University First Hospital, Beijing, P.R. China, ⁴University of Michigan, Ann Arbor, MI, United States of America, ⁵Novartis Pharma AG, Basel, Switzerland, ⁶Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States of America, ⁷Novartis Healthcare Ltd, Hyderabad, India, ⁸Novartis Farmacéutica SA, Barcelona, Spain, ⁹University of Leicester & Leicester General Hospital, Leicester, United Kingdom

INTRODUCTION

- Overactivation of the alternative pathway is one of the key drivers of IgAN. Targeting the alternative pathway may address an unmet need for targeted immunomodulation and result in the improvement of kidney function and prevention of disease progression.^{1,2}
- Iptacopan is a proximal complement inhibitor that targets factor B to specifically inhibit the alternative complement pathway while leaving signaling from the lectin and classical pathways intact.^{1,3,4}

AIM


- This repeat-biopsy mechanistic study aims to evaluate the effects of iptacopan on the underlying immunopathology in patients with IgAN and to better understand the role of complement activation in IgAN

ABBREVIATIONS

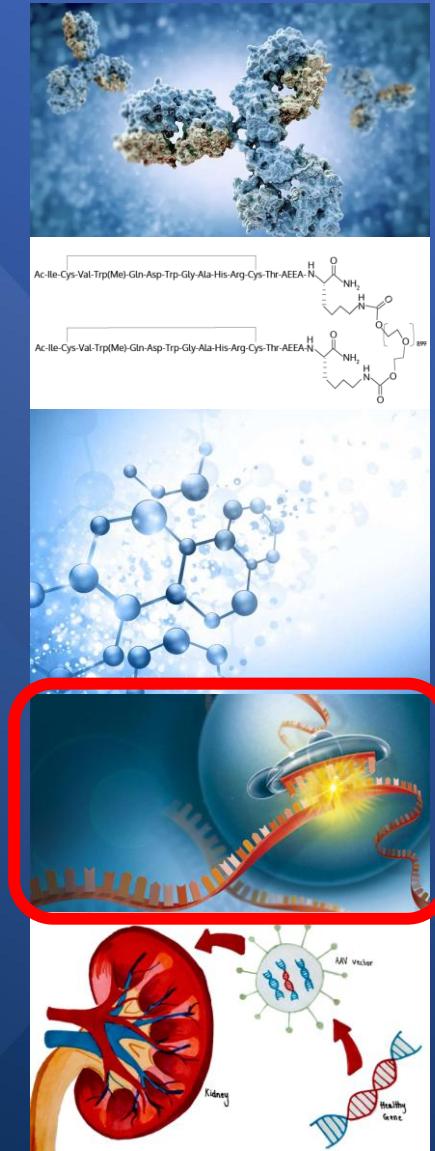
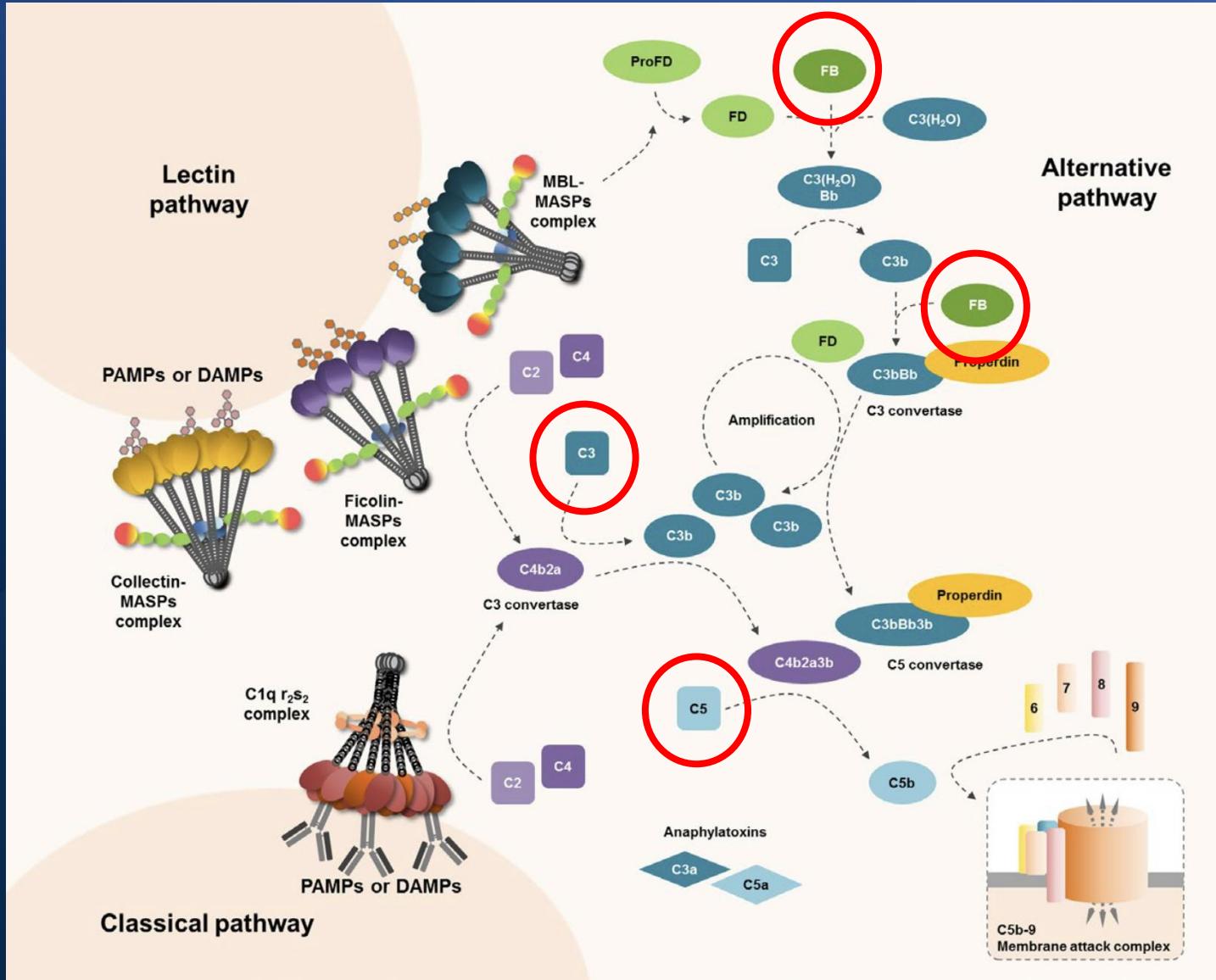
ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; bid, twice a day; C3c, complement 3c; eGFR, estimated glomerular filtration rate; FMV, first morning void; IgAN, IgA nephropathy; RBC/HPF, red blood cell per high power field; SGLT2i, sodium-glucose co-transporter 2 inhibitors; UPCR, urine protein-creatinine ratio.

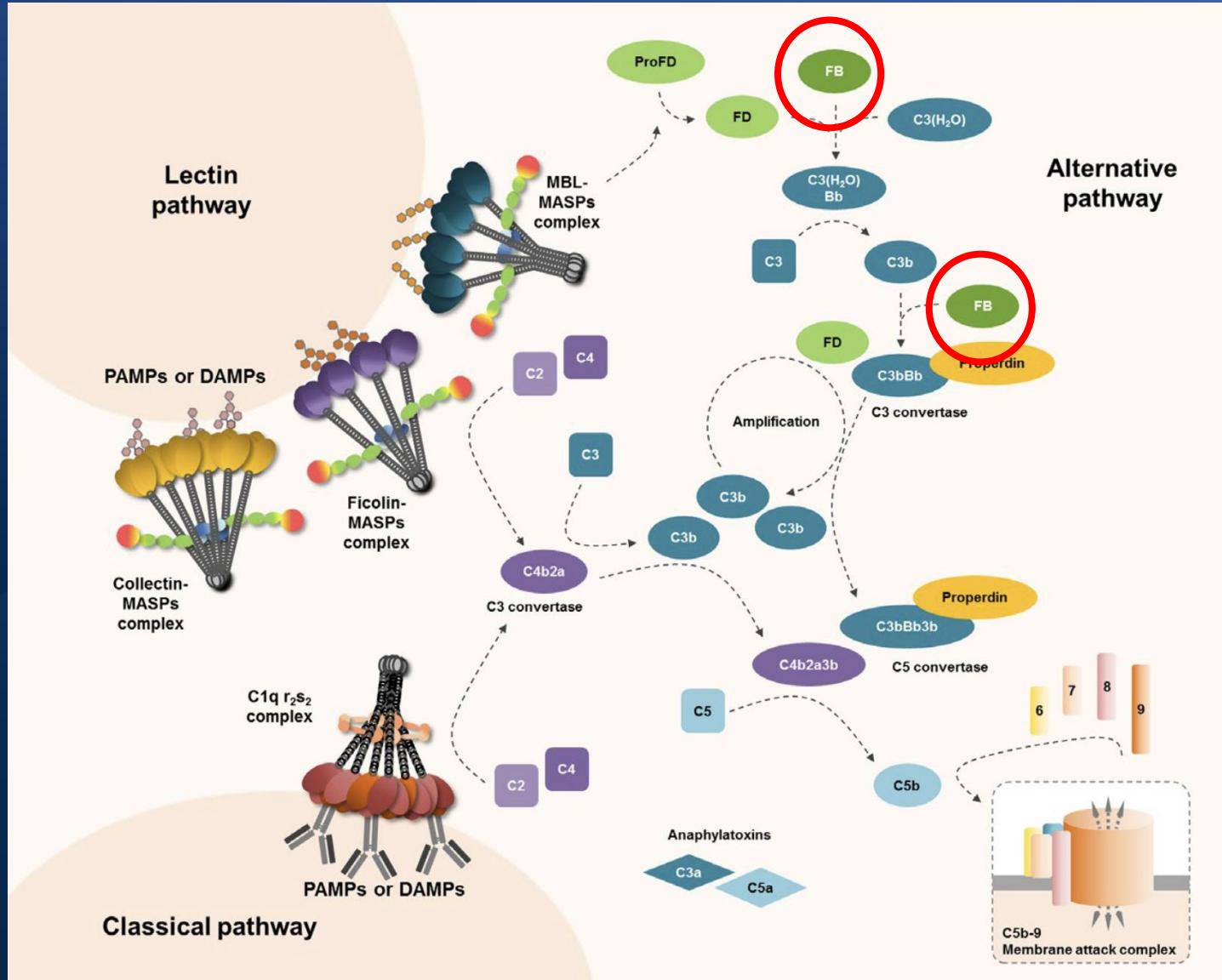
METHOD

- This Phase IIa multicenter, single-arm, open-label, repeat-biopsy study will enroll up to 20 adult patients with IgAN (Figure).
- Key inclusion criteria include biopsy-proven IgAN; eGFR ≥ 30 mL/min/1.73 m²; proteinuria ≥ 0.8 g/g from FMV; receiving a maximally tolerated and/or stable dose of supportive care treatment (ACEi or ARB and/or SGLT2i) for ≥ 90 days before baseline. Vaccination against *Neisseria meningitidis* and *Streptococcus pneumoniae* must be completed, and—if available and per local regulations—*Haemophilus influenzae* vaccination should be administered, at least 2 weeks before starting study treatment.
- The primary, secondary, exploratory objectives are listed in the Table.

bid, twice a day; D, day; EOT, end of treatment; n, number of participants. *Eligible participants may enroll in the roll-over extension study, contingent upon local regulations.

Table: Key Study Objectives



Objective	Endpoint (s)
Primary	
Quantifying the change after treatment with iptacopan in mesangial C3c and C3c-containing fragments	Achievement of a minimum one-grade reduction from baseline at 9 months in mesangial C3c and C3c-containing fragments
Secondary	
Describing the histopathological changes after iptacopan treatment	Change from baseline at 9 months in CD68+ cells and immunoglobulins
Exploratory	
Evaluating the histopathological changes in complement biomarkers after treatment with iptacopan	Change from baseline at 9 months in MEST-C score
Describing changes in UPCR, hematuria, and eGFR after treatment with iptacopan	Log-transformed ratio to baseline of UPCR at 9 months. Change from baseline at 9 months in dipstick and RBC/HPF, and in eGFR
Exploring the correlation of histopathological changes with proteinuria and eGFR changes after treatment with iptacopan	Correlation between changes in histology and eGFR changes


CONCLUSIONS

- This repeat-biopsy study will explore the impact of iptacopan on IgAN immunopathology by assessing glomerular complement activation together with renal histopathology, kidney function, and key biomarkers.
- The findings will enhance understanding of the mechanistic effects of iptacopan on IgAN and potential kidney protective benefits.

REFERENCES

- Zhang H, et al. *Kidney Int*. 2024;105(1):189-199
- Rizk DV, et al. *Kidney Int Rep*. 2023; 9:8(5):968-979
- Schubart A, et al. *Proc Natl Acad Sci USA*. 2019;116(16):7926-7931
- Novartis Pharmaceuticals Corporation. Fabalta prescribing information. 2023. Available at: <a href="https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/218276s0011s002s003s004s005s006s007s008s009s010s011s012s013s014s015s016s017s018s019s020s021s022s023s024s025s026s027s028s029s030s031s032s033s034s035s036s037s038s039s040s041s042s043s044s045s046s047s048s049s050s051s052s053s054s055s056s057s058s059s060s061s062s063s064s065s066s067s068s069s070s071s072s073s074s075s076s077s078s079s080s081s082s083s084s085s086s087s088s089s090s091s092s093s094s095s096s097s098s099s0100s0101s0102s0103s0104s0105s0106s0107s0108s0109s0110s0111s0112s0113s0114s0115s0116s0117s0118s0119s0120s0121s0122s0123s0124s0125s0126s0127s0128s0129s0130s0131s0132s0133s0134s0135s0136s0137s0138s0139s0140s0141s0142s0143s0144s0145s0146s0147s0148s0149s0150s0151s0152s0153s0154s0155s0156s0157s0158s0159s0160s0161s0162s0163s0164s0165s0166s0167s0168s0169s0170s0171s0172s0173s0174s0175s0176s0177s0178s0179s0180s0181s0182s0183s0184s0185s0186s0187s0188s0189s0190s0191s0192s0193s0194s0195s0196s0197s0198s0199s0200s0201s0202s0203s0204s0205s0206s0207s0208s0209s0210s0211s0212s0213s0214s0215s0216s0217s0218s0219s0220s0221s0222s0223s0224s0225s0226s0227s0228s0229s0230s0231s0232s0233s0234s0235s0236s0237s0238s0239s0240s0241s0242s0243s0244s0245s0246s0247s0248s0249s0250s0251s0252s0253s0254s0255s0256s0257s0258s0259s0260s0261s0262s0263s0264s0265s0266s0267s0268s0269s0270s0271s0272s0273s0274s0275s0276s0277s0278s0279s0280s0281s0282s0283s0284s0285s0286s0287s0288s0289s0289s0290s0291s0292s0293s0294s0295s0296s0297s0298s0299s0299s0300s0301s0302s0303s0304s0305s0306s0307s0308s0309s03010s03011s03012s03013s03014s03015s03016s03017s03018s03019s03020s03021s03022s03023s03024s03025s03026s03027s03028s03029s03030s03031s03032s03033s03034s03035s03036s03037s03038s03039s030310s030311s030312s030313s030314s030315s030316s030317s030318s030319s030320s030321s030322s030323s030324s030325s030326s030327s030328s030329s030330s030331s030332s030333s030334s030335s030336s030337s030338s030339s030340s030341s030342s030343s030344s030345s030346s030347s030348s030349s030350s030351s030352s030353s030354s030355s030356s030357s030358s030359s030360s030361s030362s030363s030364s030365s030366s030367s030368s030369s030370s030371s030372s030373s030374s030375s030376s030377s030378s030379s030380s030381s030382s030383s030384s030385s030386s030387s030388s030389s030390s030391s030392s030393s030394s030395s030396s030397s030398s030399s0303100s0303101s0303102s0303103s0303104s0303105s0303106s0303107s0303108s0303109s0303110s0303111s0303112s0303113s0303114s0303115s0303116s0303117s0303118s0303119s0303120s0303121s0303122s0303123s0303124s0303125s0303126s0303127s0303128s0303129s0303130s0303131s0303132s0303133s0303134s0303135s0303136s0303137s0303138s0303139s0303140s0303141s0303142s0303143s0303144s0303145s0303146s0303147s0303148s0303149s0303150s0303151s0303152s0303153s0303154s0303155s0303156s0303157s0303158s0303159s0303160s0303161s0303162s0303163s0303164s0303165s0303166s0303167s0303168s0303169s0303170s0303171s0303172s0303173s0303174s0303175s0303176s0303177s0303178s0303179s0303180s0303181s0303182s0303183s0303184s0303185s0303186s0303187s0303188s0303189s0303190s0303191s0303192s0303193s0303194s0303195s0303196s0303197s0303198s0303199s0303200s0303201s0303202s0303203s0303204s0303205s0303206s0303207s0303208s0303209s0303210s0303211s0303212s0303213s0303214s0303215s0303216s0303217s0303218s0303219s0303220s0303221s0303222s0303223s0303224s0303225s0303226s0303227s0303228s0303229s0303230s0303231s0303232s0303233s0303234s0303235s0303236s0303237s0303238s0303239s0303240s0303241s0303242s0303243s0303244s0303245s0303246s0303247s0303248s0303249s0303250s0303251s0303252s0303253s0303254s0303255s0303256s0303257s0303258s0303259s0303260s0303261s0303262s0303263s0303264s0303265s0303266s0303267s0303268s0303269s0303270s0303271s0303272s0303273s0303274s0303275s0303276s0303277s0303278s0303279s0303280s0303281s0303282s0303283s0303284s0303285s0303286s0303287s0303288s0303289s0303289s0303290s0303291s0303292s0303293s0303294s0303295s0303296s0303297s0303298s0303299s0303300s0303301s0303302s0303303s0303304s0303305s0303306s0303307s0303308s0303309s0303310s0303311s0303312s0303313s0303314s0303315s0303316s0303317s0303318s0303319s0303320s0303321s0303322s0303323s0303324s0303325s0303326s0303327s0303328s0303329s0303330s0303331s0303332s0303333s0303334s0303335s0303336s0303337s0303338s0303339s0303340s0303341s0303342s0303343s0303344s0303345s0303346s0303347s0303348s0303349s0303350s0303351s0303352s0303353s0303354s0303355s0303356s0303357s0303358s0303359s0303360s0303361s0303362s0303363s0303364s0303365s0303366s0303367s0303368s0303369s0303370s0303371s0303372s0303373s0303374s0303375s0303376s0303377s0303378s0303379s0303380s0303381s0303382s0303383s0303384s0303385s0303386s0303387s0303388s0303389s0303389s0303390s0303391s0303392s0303393s0303394s0303395s0303396s0303397s0303398s0303399s03033100s03033101s03033102s03033103s03033104s03033105s03033106s03033107s03033108s03033109s03033110s03033111s03033112s03033113s03033114s03033115s03033116s03033117s03033118s03033119s03033120s03033121s03033122s03033123s03033124s03033125s03033126s03033127s03033128s03033129s03033130s03033131s03033132s03033133s03033134s03033135s03033136s03033137s03033138s03033139s03033140s03033141s03033142s03033143s03033144s03033145s03033146s03033147s03033148s03033149s03033150s03033151s03033152s03033153s03033154s03033155s03033156s03033157s03033158s03033159s03033160s03033161s03033162s03033163s03033164s03033165s03033166s03033167s03033168s03033169s03033170s03033171s03033172s03033173s03033174s03033175s03033176s03033177s03033178s03033179s03033180s03033181s03033182s03033183s03033184s03033185s03033186s03033187s03033188s03033189s03033189s03033190s03033191s03033192s03033193s03033194s03033195s03033196s03033197s03033198s03033199s030331100s030331101s030331102s030331103s030331104s030331105s030331106s030331107s030331108s030331109s030331110s030331111s030331112s030331113s030331114s030331115s030331116s030331117s030331118s030331119s030331120s030331121s030331122s030331123s030331124s030331125s030331126s030331127s030331128s030331129s030331130s030331131s030331132s030331133s030331134s030331135s030331136s030331137s030331138s030331139s030331140s030331141s030331142s030331143s030331144s030331145s030331146s030331147s030331148s030331149s030331150s030331151s030331152s030331153s030331154s030331155s030331156s030331157s030331158s030331159s030331160s030331161s030331162s030331163s030331164s030331165s030331166s030331167s030331168s030331169s030331170s030331171s030331172s030331173s030331174s030331175s030331176s030331177s030331178s030331179s030331180s030331181s030331182s030331183s030331184s030331185s030331186s030331187s030331188s030331189s030331189s030331190s030331191s030331192s030331193s030331194s030331195s030331196s030331197s030331198s030331199s030331200s030331201s030331202s030331203s030331204s030331205s030331206s030331207s030331208s030331209s030331210s030331211s030331212s030331213s030331214s030331215s030331216s030331217s030331218s030331219s030331220s030331221s030331222s030331223s030331224s030331225s030331226s030331227s030331228s030331229s030331230s030331231s030331232s030331233s030331234s030331235s030331236s030331237s030331238s030331239s030331240s030331241s030331242s030331243s030331244s030331245s030331246s030331247s030331248s030331249s030331250s030331251s030331252s030331253s030331254s030331255s030331256s030331257s030331258s030331259s030331260s030331261s030331262s030331263s030331264s030331265s030331266s030331267s030331268s030331269s030331270s030331271s030331272s030331273s030331274s030331275s030331276s030331277s030331278s030331279s030331280s030331281s030331282s030331283s030331284s030331285s030331286s030331287s030331288s030331289s030331289s030331290s030331291s030331292s030331293s030331294s030331295s030331296s030331297s030331298s030331299s030331300s030331301s030331302s030331303s030331304s030331305s030331306s030331307s030331308s030331309s030331310s030331311s030331312s030331313s030331314s030331315s030331316s030331317s030331318s030331319s030331319s030331320s030331321s030331322s030331323s030331324s030331325s030331326s030331327s030331328s030331329s030331330s030331331s030331332s030331333s030331334s030331335s030331336s030331337s030331338s030331339s030331340s030331341s030331342s030331343s030331344s030331345s030331346s030331347s030331348s030331349s030331350s030331351s030331352s030331353s030331354s030331355s030331356s030331357s030331358s030331359s030331360s030331361s030331362s030331363s030331364s030331365s030331366s030331367s030331368s030331

RECRUITING ⓘ

A Study to Evaluate the Efficacy and Safety of RO7434656 in Participants With Primary Immunoglobulin A (IgA) Nephropathy at High Risk of Progression (IMAGINATION)

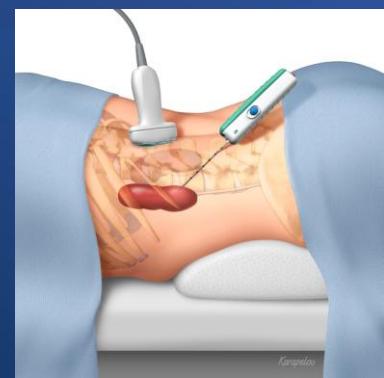
ClinicalTrials.gov ID ⓘ NCT05797610

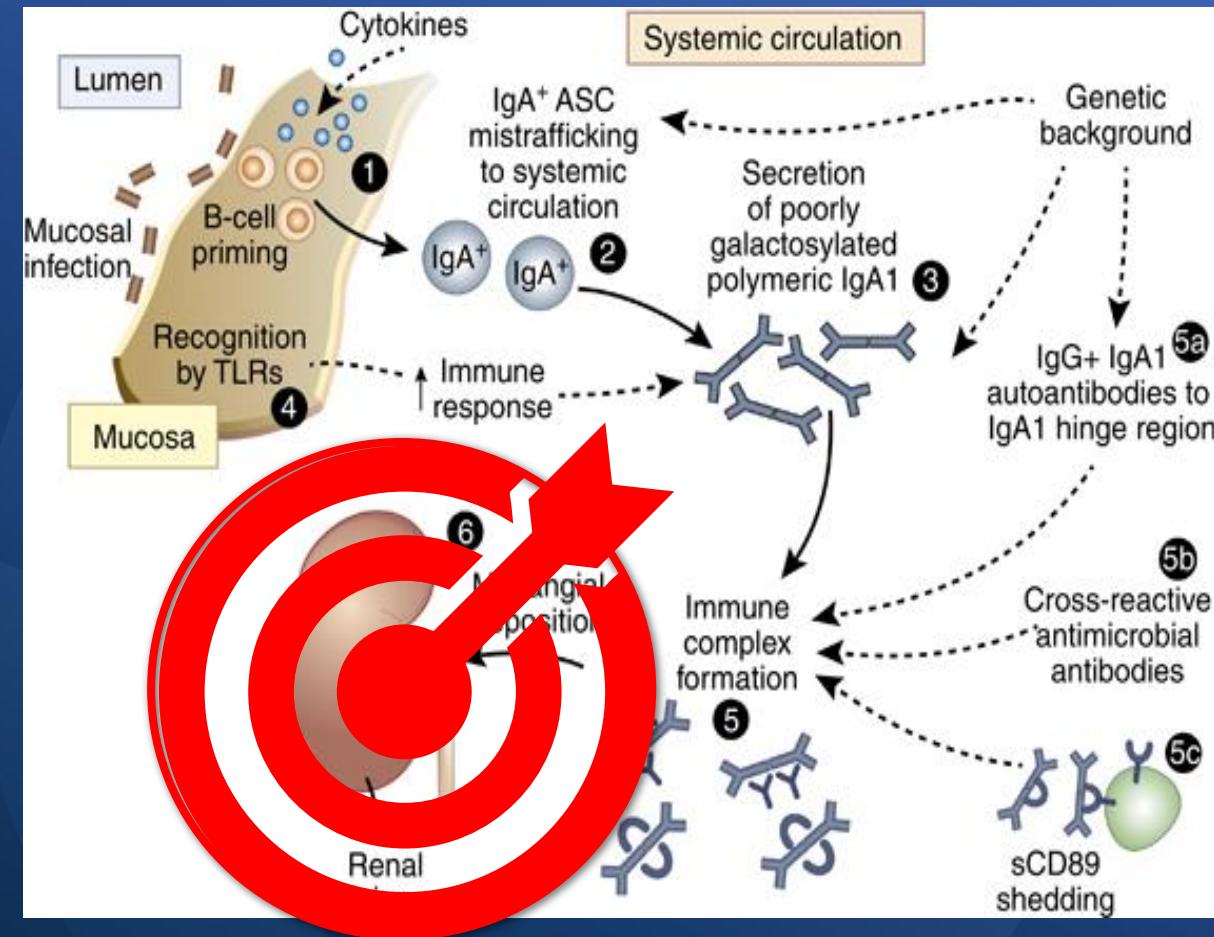
Sponsor ⓘ Hoffmann-La Roche

Information provided by ⓘ Hoffmann-La Roche (Responsible Party)

Last Update Posted ⓘ 2024-05-10

RECRUITING ⓘ


Study of ARO-CFB in Adult Healthy Volunteers and Patients With Complement-Mediated Kidney Disease


ClinicalTrials.gov ID ⓘ NCT06209177

Sponsor ⓘ Arrowhead Pharmaceuticals

Information provided by ⓘ Arrowhead Pharmaceuticals (Responsible Party)

Last Update Posted ⓘ 2024-04-24

Articles

Sparsentan in patients with IgA nephropathy: a prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial

Hidde J Heerspink, Jai Radhakrishnan, Charles F Alpers, Jonathan Barrett, Stewart Bieler, Ulysses Diva, Julia Inrig, Radko Komers, Alex Mercer, Irene L Noorani, Michelle N Rheault, William Rote, Brad Rovin, Howard Trachtman, Hernán Trimarchi, Muhammed Wong, Vlado Perkovic, for the PROTECT Investigators*

Summary Sparsentan is a novel, non-immunosuppressive, single-molecule, dual endothelin and angiotensin receptor antagonist being examined in an ongoing phase 3 trial in adults with IgA nephropathy. We report the prespecified interim analysis of the primary proteinuria efficacy endpoint, and safety.

Methods PROTECT is an international, randomised, double-blind, active-controlled study, being conducted in 134 clinical practice sites in 18 countries. The study examines sparsentan versus irbesartan in adults (aged ≥ 18 years) with biopsy-proven IgA nephropathy and proteinuria of 1.0 g/day or higher despite maximised renin-angiotensin system inhibitor treatment for at least 12 weeks. Participants were randomly assigned in a 1:1 ratio to receive sparsentan 400 mg once daily or irbesartan 300 mg once daily, stratified by estimated glomerular filtration rate at screening (30 to <60 mL/min per 1.73 m² and ≥ 60 mL/min per 1.73 m²) and urine protein excretion at screening (<1.75 g/day and >1.75 g/day). The primary efficacy endpoint was change from baseline to week 36 in urine protein-creatinine ratio based on a 24-h urine sample, assessed using mixed model repeated measures. Treatment-emergent adverse events (TEAEs) were safety endpoints. All endpoints were examined in all participants who received at least one dose of randomised treatment. The study is ongoing and is registered with ClinicalTrials.gov, NCT03762850.

Findings Between Dec 20, 2018, and May 26, 2021, 404 participants were randomly assigned to sparsentan (n=202) or irbesartan (n=202) and received treatment. At week 36, the geometric least squares mean percent change from baseline in urine protein-creatinine ratio was statistically significantly greater in the sparsentan group (−49.8%) than the irbesartan group (−15.1%), resulting in a between-group relative reduction of 41% (least squares mean ratio=0.59; 95% CI 0.51–0.69; $p<0.0001$). TEAEs with sparsentan were similar to irbesartan. There were no cases of severe oedema, heart failure, hepatotoxicity, or oedema-related discontinuations. Bodyweight changes from baseline were not different between the sparsentan and irbesartan groups.

Interpretation Once-daily treatment with sparsentan produced meaningful reduction in proteinuria compared with irbesartan in adults with IgA nephropathy. Safety of sparsentan was similar to irbesartan. Future analyses after completion of the 2-year double-blind period will show whether these beneficial effects translate into a long-term nephroprotective potential of sparsentan.

Funding Travere Therapeutics.

Copyright © 2023 Published by Elsevier Ltd. All rights reserved.

Introduction

Immunoglobulin A (IgA) nephropathy is the most common primary glomerulonephritis and an important cause of kidney failure.^{1,2} Proteinuria has been consistently shown to be a risk factor for progressive kidney function loss in patients with IgA nephropathy,³ and remission of proteinuria is associated with improved kidney outcomes.⁴ Despite the risk of progressive kidney disease and kidney failure, few therapeutic options are available. The Kidney Disease Improving Global Outcomes (KDIGO) guideline recommends the use of renin-angiotensin system (RAS) inhibitors in patients with proteinuria more than 0.5 g/day.⁵ Following 3 months of RAS inhibitor treatment, patients with

proteinuria of 1 g/day or higher have a greater risk of disease progression, and additional treatment is recommended.

The use of RAS inhibitors as standard of care in IgA nephropathy is based on their well established pleiotropic nephroprotective actions in a variety of kidney diseases and indicates a contribution of its main effector, angiotensin II, in the pathophysiology of IgA nephropathy.⁶ More recently, advances in our understanding of the pathogenesis of IgA nephropathy show that endothelin-1 (ET-1) contributes to the pathophysiology of IgA nephropathy via activation of ET_A receptors, leading to a variety of effects including vasoconstriction, podocyte dysfunction, tubular injury, inflammation, and fibrosis.⁷

Published Online
April 1, 2023
[https://doi.org/10.1016/S0140-6736\(23\)00569-X](https://doi.org/10.1016/S0140-6736(23)00569-X)

See Online/Comment
[https://doi.org/10.1016/S0140-6736\(23\)00530-X](https://doi.org/10.1016/S0140-6736(23)00530-X)

*PROTECT Investigators are listed in the appendix (pp 2–5).

Department of Clinical

Pharmacy and Pharmacology,

University of Groningen,

Groningen, Netherlands

(Prof) Hidde J Heerspink, MD;

The George

Institute for Global

Health, University of New

South Wales, Sydney, NSW,

Australia (Prof) J Heerspink,

Prof) V Perkovic, MD;

H Trimarchi, MD;

Division of

Nephrology, Columbia

University, New York, NY, USA

(Prof) J Heerspink, MD;

Department of Laboratory

Medicine and Pathology,

University of Washington,

Seattle, WA, USA

(Prof) C F Alpers, MD;

Department of Cardiovascular

Surgery, University of

Leicester, Leicester, UK

(Prof) J Heerspink, MD;

Traverse

Therapeutics, San Diego, CA,

USA (S Bieler, BA, U Diva, PhD,

J Inrig, MD, R Komers, MD,

W Rote, PhD); JAMCO Pharma

Consultants, Stockholm,

Sweden (A Kjellström, PhD);

Laboratory of Cellular, Genetic,

and Molecular Nephrology,

Division of Nephrology,

University of São Paulo School

of Medicine, São Paulo, Brazil

(Prof) I Noorani, MD); Division

of Pediatric Nephrology,

Medical School, Minneapolis,

MN, USA (M N Rheault, MD);

Division of Nephrology, Ohio

State University, Columbus,

OH, USA (Prof) B Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

(Prof) H Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

</

ACTIVE, NOT RECRUITING

A Study of the Safety and Activity of Sparsentan for the Treatment of Incident Patients With Immunoglobulin A Nephropathy (SPARTAN)

[ClinicalTrials.gov ID](#) NCT04663204

Sponsor University of Leicester

Information provided by University of Leicester (Responsible Party)

Last Update Posted 2023-10-24

SPARTAN (NCT0466320) Study Design

SPARTAN

Screening

Day 1 to Week 2

SPARSENTAN 200 mg

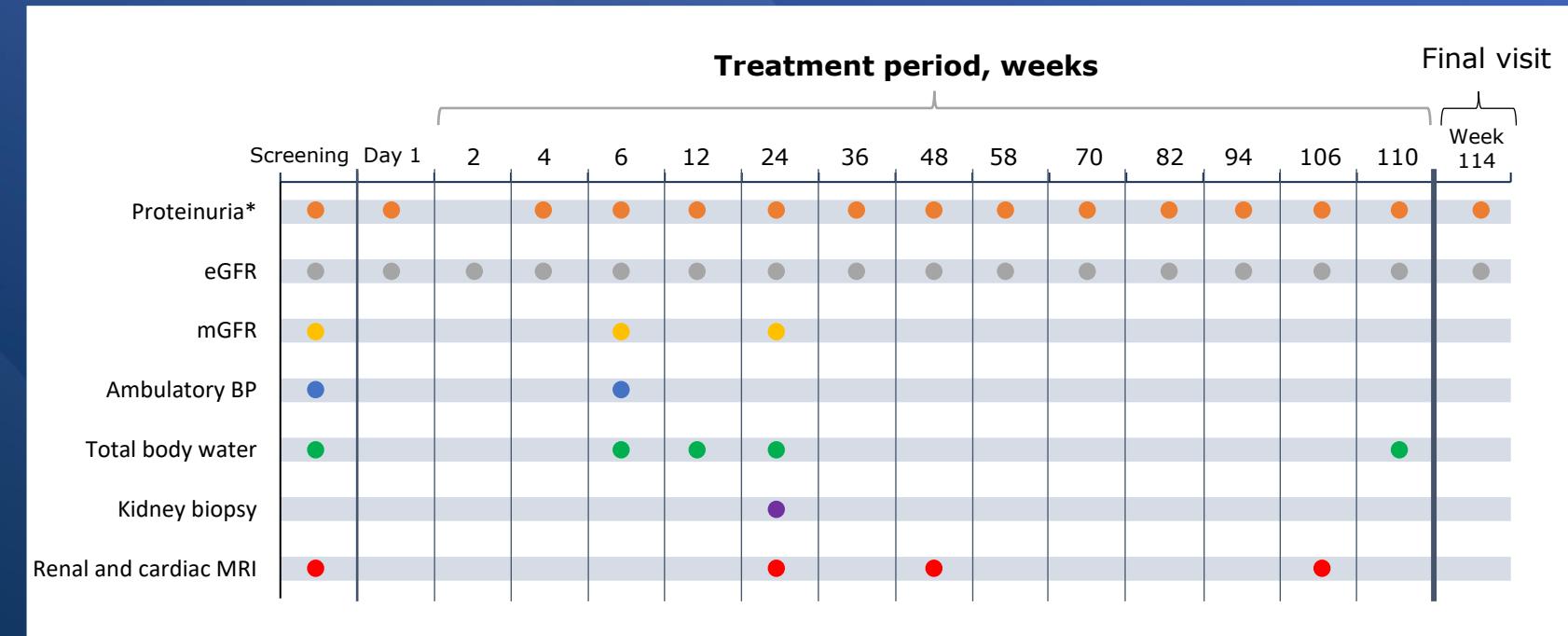
Weeks 3 to 110

SPARSENTAN 400 mg

Weeks 110 to 114

Follow-up

N=12

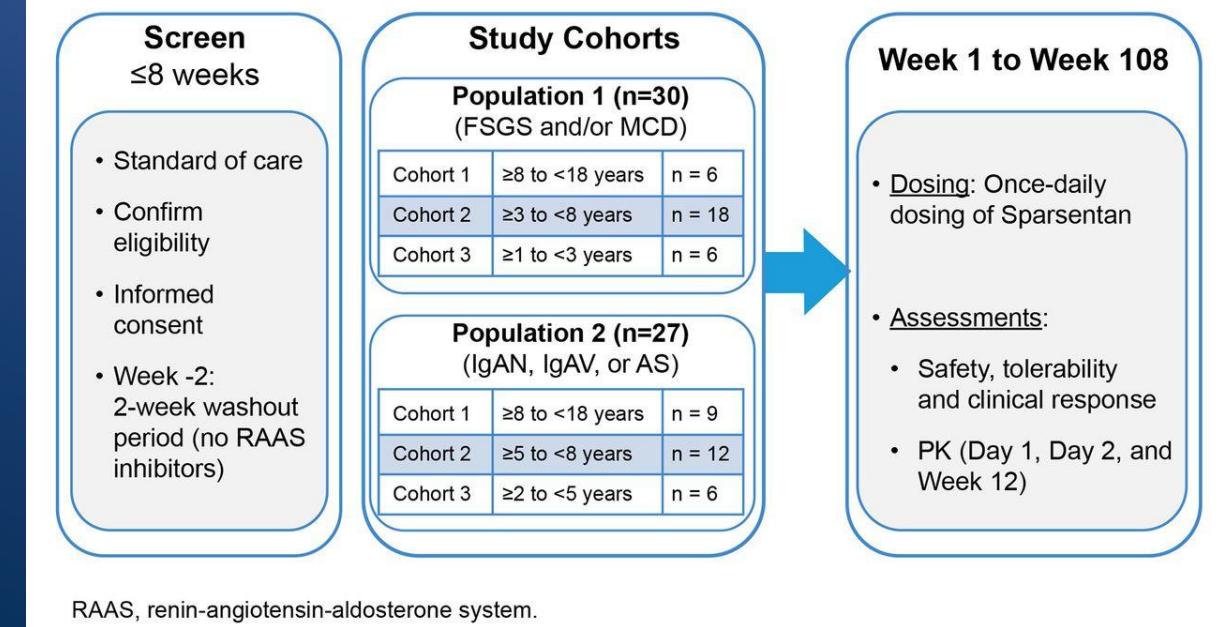

Start SOC RASB therapy

Key Eligibility Criteria

- Age ≥ 18 years
- Biopsy-proven IgAN within ≤ 6 months
- Proteinuria ≥ 0.5 g/day
- eGFR ≥ 30 mL/min/1.73 m²
- No ACEIs/ARBs within ≤ 12 months

Key Endpoints

- Safety
- Change in proteinuria from baseline
- Complete remission of proteinuria (<0.3 g/day)
- Change in GFR and BP from baseline


SPARTAN

Kidney Transplantation

Figure 1. Study Design

Recruiting

Trial of the Impact of Sibprenlimab on Immunoglobulin A Nephropathy Kidney Tissue

ClinicalTrials.gov ID NCT06740526

Sponsor Otsuka Pharmaceutical Development & Commercialization, Inc.

Information provided by Otsuka Pharmaceutical Development & Commercialization, Inc. (Responsible Party)

Last Update Posted 2025-04-06

62nd ERA
CONGRESS
VIENNA / VIRTUAL
April 2025

A mechanistic biopsy study of the effect of iptacopan on immunopathology in patients with IgA nephropathy (IgAN)

DANA V. RIZK¹, BART MAES², HONG ZHANG³, MATTHIAS KREITZER⁴, FRANK ETHER⁵, CLINT W. ABNER⁶, MARIE-ANNE VALENTIN⁷, VERN N.⁸, MARIA FERNANDA DI PATA⁹, JONATHAN BARRATT¹⁰

¹The University of Birmingham, Birmingham, United States of America; ²Odin General Hospital, West Flanders, Belgium; ³Peking University First Hospital, Beijing, P.R. China; ⁴University of Michigan, Ann Arbor, MI, United States of America; ⁵Novartis Pharma AG, Basel, Switzerland; ⁶Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States of America; ⁷Novartis Healthcare Ltd, Hyderabad, India; ⁸Novartis Pharmaceuticals SA, Barcelona, Spain; ⁹University of Leicester & Leicester General Hospital, Leicester, United Kingdom

INTRODUCTION

- Overactivation of the alternative pathway is one of the key drivers of IgAN. Targeting the alternative pathway may address an unmet need for targeted therapy in IgAN, which may result in the improvement of kidney function and prevention of disease progression.^{1,2}
- Iptacopan is a proximal complement inhibitor that targets factor B to specifically inhibit the alternative complement pathway while leaving signaling from the lectin and classical pathways intact.^{3,4}

AIM

- This repeat-biopsy mechanistic study aims to evaluate the effects of iptacopan on the underlying immunopathology in patients with IgAN and to better understand the role of complement activation in IgAN.

ABBREVIATIONS
ACE, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; B2b, twice a day; C3c, complement 3c; eGFR, estimated glomerular filtration rate; IgAN, immunoglobulin A nephropathy; IgG, immunoglobulin G; RBC/HpV, red blood cell per high power field; SGLT2, sodium-glucose co-transporter 2 inhibitor; UPCR, urine protein-creatinine ratio.

METHOD

- This Phase IIa multicenter, single-arm, open-label, repeat-biopsy study will enroll up to 20 adult patients with IgAN (Figure).
- Key inclusion criteria include biopsy-proven IgAN; eGFR ≥ 30 mL/min/1.73 m²; proteinuria ≥ 8 g/g from FMV; receiving a maximally tolerated and/or stable dose of supportive care treatment (ACEi or ARB and/or SGLT2) for ≥ 90 days before baseline.
- Vaccination against *Neisseria meningitidis* and *Streptococcus pneumoniae* must be completed, and—if available and per local regulations—*Haemophilus influenzae* vaccination should be administered, at least 2 weeks before starting study treatment.
- The primary, secondary, exploratory objectives are listed in the Table.

Table: Key Study Objectives

Objective	Endpoint (s)
Primary	Quantifying the change after treatment with iptacopan in mesangial C3c and C3c-containing fragments
Secondary	Achievement of a minimum one-grade reduction from baseline at 9 months in mesangial C3c and C3c-containing fragments
Exploratory	Describing the histopathological changes after iptacopan treatment
Evaluating the histopathological changes in complement biomarkers after treatment with iptacopan	Change from baseline at 9 months in MEST-C score
Describing changes in UPCR, hematuria, and eGFR after treatment with iptacopan	Log-transformed ratio to baseline of UPCR at 9 months. Change from baseline at 9 months in dipstick and RBC/HpV, and in eGFR
Exploring the correlation of histopathological changes with proteinuria and eGFR changes after treatment with iptacopan	Correlation between changes in histology and eGFR changes

Table: Key Study Objectives

Primary: Quantifying the change after treatment with iptacopan in mesangial C3c and C3c-containing fragments.

Secondary: Achievement of a minimum one-grade reduction from baseline at 9 months in mesangial C3c and C3c-containing fragments.

Exploratory: Describing the histopathological changes after iptacopan treatment.

Evaluating the histopathological changes in complement biomarkers after treatment with iptacopan.

Describing changes in UPCR, hematuria, and eGFR after treatment with iptacopan.

Exploring the correlation of histopathological changes with proteinuria and eGFR changes after treatment with iptacopan.

CONCLUSIONS

- This repeat-biopsy study will explore the impact of iptacopan on IgAN immunopathology by assessing glomerular complement activation together with renal histopathology, kidney function, and key biomarkers.
- The findings will enhance understanding of the mechanistic effects of iptacopan on IgAN and potential kidney protective benefits.

REFERENCES

- Zhou Y, et al. *Kidney Int*. 2024;105(1):188-199.
- Rizk DV, et al. *Kidney Int Rep*. 2023; 9(8):989-979.
- Schubert A, et al. *Proc Natl Acad Sci USA*. 2019;116(10):4833-4842.
- Novartis Pharmaceuticals Corporation. Fabibata® prescribing information. 2023. Available at: <https://www.accessdata.fda.gov/drugsatfdaatf/2023/2107400001/pdf/PrescribedMay2023>

ACKNOWLEDGMENTS

Professional medical writing assistance was provided by Nupur Chauhan (Novartis Healthcare Pvt Ltd).

CONTACT INFORMATION

In case of any questions, please contact Dr. D.V. Rizk at: dr.rizk@uab.edu.

RECRUITING

A Study to Evaluate the Efficacy and Safety of RO7434656 in Participants With Primary Immunoglobulin A (IgA) Nephropathy at High Risk of Progression (IMAGINATION)

ClinicalTrials.gov ID NCT05797610

Sponsor Hoffmann-La Roche

Information provided by Hoffmann-La Roche (Responsible Party)

Last Update Posted 2024-05-10

RECRUITING

Study of Ravulizumab in Immunoglobulin A Nephropathy (IgAN) (ICAN)

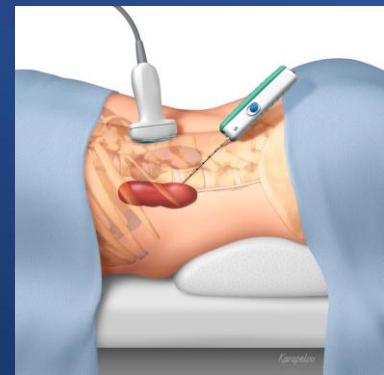
ClinicalTrials.gov ID NCT06291376

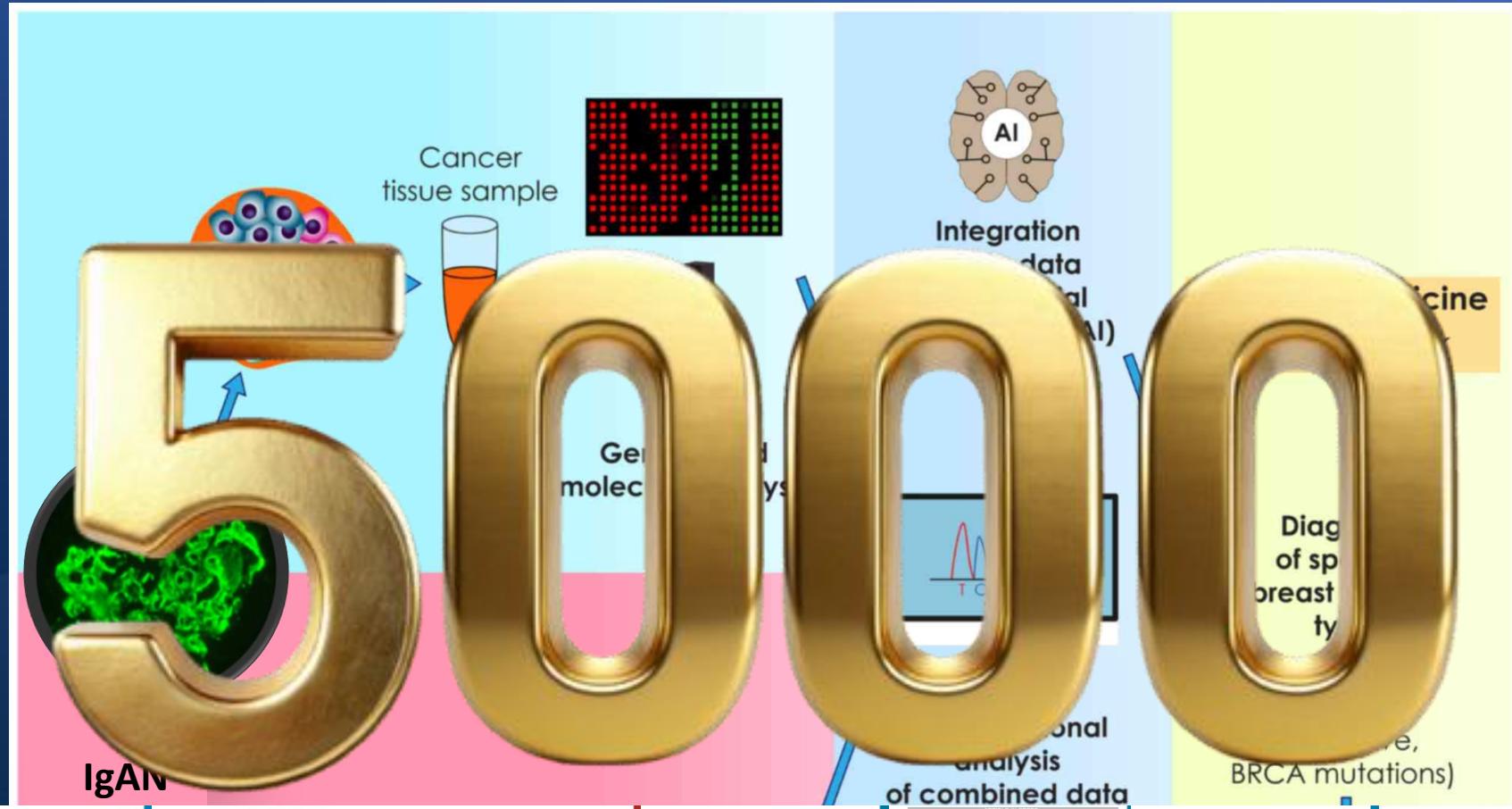
Sponsor Alexion Pharmaceuticals, Inc.

Information provided by Alexion Pharmaceuticals, Inc. (Responsible Party)

Last Update Posted 2024-05-03

Recruiting


Evaluation of Efficacy of Povetacicept in Adults With Immunoglobulin A Nephropathy (IgAN)


ClinicalTrials.gov ID NCT06564142

Sponsor Alpine Immune Sciences Inc, A Subsidiary of Vertex

Information provided by Alpine Immune Sciences, Inc. (Alpine Immune Sciences Inc, A Subsidiary of Vertex) (Responsible Party)

Last Update Posted 2024-12-05

IgAN

Targeted-release budesonide modifies key pathogenic markers in immunoglobulin A nephropathy: insights from the NEFGAN trial

Abstract

Targeted-release budesonide significantly reduces IgA1 nephropathy-associated markers in a Phase 2 trial.

Background

IgA1 nephropathy is a heterogeneous disease with significant heterogeneity in clinical presentation and response to therapy. The pathophysiology of IgA1 nephropathy is not fully understood, but it is believed to involve IgA1 deposits in the glomeruli and tubular basement membranes, leading to tubular dysfunction and proteinuria.

Objectives

The aim of this study was to evaluate the efficacy and safety of targeted-release budesonide in the treatment of IgA1 nephropathy.

Methods

A randomized, double-blind, placebo-controlled trial was conducted in 40 patients with IgA1 nephropathy. Patients were assigned to receive targeted-release budesonide (10 mg/day) or placebo for 12 weeks. The primary endpoint was the change in urinary IgA1 excretion rate at week 12.

Results

At week 12, the targeted-release budesonide group showed a significant reduction in urinary IgA1 excretion rate compared to the placebo group (mean difference -0.14 mg/day, 95% CI -0.28 to -0.01, $P = 0.04$). There was no significant difference in adverse events between the two groups.

Conclusion

Targeted-release budesonide significantly reduces IgA1 nephropathy-associated markers in a Phase 2 trial.

A Phase 2 Trial of Sibrelimumab in Patients with IgA Nephropathy

Abstract

Sibrelimumab significantly reduces IgA1 nephropathy-associated markers in a Phase 2 trial.

Background

IgA1 nephropathy is a heterogeneous disease with significant heterogeneity in clinical presentation and response to therapy. The pathophysiology of IgA1 nephropathy is not fully understood, but it is believed to involve IgA1 deposits in the glomeruli and tubular basement membranes, leading to tubular dysfunction and proteinuria.

Objectives

The aim of this study was to evaluate the efficacy and safety of sibrelimumab in the treatment of IgA1 nephropathy.

Methods

A randomized, double-blind, placebo-controlled trial was conducted in 40 patients with IgA1 nephropathy. Patients were assigned to receive sibrelimumab (100 mg every 2 weeks) or placebo for 12 weeks. The primary endpoint was the change in urinary IgA1 excretion rate at week 12.

Results

At week 12, the sibrelimumab group showed a significant reduction in urinary IgA1 excretion rate compared to the placebo group (mean difference -0.14 mg/day, 95% CI -0.28 to -0.01, $P = 0.04$). There was no significant difference in adverse events between the two groups.

Conclusion

Sibrelimumab significantly reduces IgA1 nephropathy-associated markers in a Phase 2 trial.

Long-Term Results from an Open-Label Extension Study of Atacept for the Treatment of IgA Nephropathy

Abstract

Atacept significantly reduces IgA1 nephropathy-associated markers in a Phase 2 trial.

Background

IgA1 nephropathy is a heterogeneous disease with significant heterogeneity in clinical presentation and response to therapy. The pathophysiology of IgA1 nephropathy is not fully understood, but it is believed to involve IgA1 deposits in the glomeruli and tubular basement membranes, leading to tubular dysfunction and proteinuria.

Objectives

The aim of this study was to evaluate the efficacy and safety of atacept in the treatment of IgA1 nephropathy.

Methods

A randomized, double-blind, placebo-controlled trial was conducted in 40 patients with IgA1 nephropathy. Patients were assigned to receive atacept (100 mg every 2 weeks) or placebo for 12 weeks. The primary endpoint was the change in urinary IgA1 excretion rate at week 12.

Results

At week 12, the atacept group showed a significant reduction in urinary IgA1 excretion rate compared to the placebo group (mean difference -0.14 mg/day, 95% CI -0.28 to -0.01, $P = 0.04$). There was no significant difference in adverse events between the two groups.

Conclusion

Atacept significantly reduces IgA1 nephropathy-associated markers in a Phase 2 trial.

Zigabart demonstrates clinical safety and efficacy in a Phase 1/2 trial of healthy volunteers and patients with IgA nephropathy

Abstract

Zigabart significantly reduces IgA1 nephropathy-associated markers in a Phase 1/2 trial.

Background

IgA1 nephropathy is a heterogeneous disease with significant heterogeneity in clinical presentation and response to therapy. The pathophysiology of IgA1 nephropathy is not fully understood, but it is believed to involve IgA1 deposits in the glomeruli and tubular basement membranes, leading to tubular dysfunction and proteinuria.

Objectives

The aim of this study was to evaluate the efficacy and safety of zigabart in the treatment of IgA1 nephropathy.

Methods

A randomized, double-blind, placebo-controlled trial was conducted in 40 patients with IgA1 nephropathy. Patients were assigned to receive zigabart (100 mg every 2 weeks) or placebo for 12 weeks. The primary endpoint was the change in urinary IgA1 excretion rate at week 12.

Results

At week 12, the zigabart group showed a significant reduction in urinary IgA1 excretion rate compared to the placebo group (mean difference -0.14 mg/day, 95% CI -0.28 to -0.01, $P = 0.04$). There was no significant difference in adverse events between the two groups.

Conclusion

Zigabart significantly reduces IgA1 nephropathy-associated markers in a Phase 1/2 trial.

Randomized, double-blind, placebo-controlled Phase 2 study assessing the efficacy and safety of felzabartamab as an alternative complement pathway inhibitor for IgA1 nephropathy

Abstract

Felzabartamab significantly reduces IgA1 nephropathy-associated markers in a Phase 2 trial.

Background

IgA1 nephropathy is a heterogeneous disease with significant heterogeneity in clinical presentation and response to therapy. The pathophysiology of IgA1 nephropathy is not fully understood, but it is believed to involve IgA1 deposits in the glomeruli and tubular basement membranes, leading to tubular dysfunction and proteinuria.

Objectives

The aim of this study was to evaluate the efficacy and safety of felzabartamab in the treatment of IgA1 nephropathy.

Methods

A randomized, double-blind, placebo-controlled trial was conducted in 40 patients with IgA1 nephropathy. Patients were assigned to receive felzabartamab (100 mg every 2 weeks) or placebo for 12 weeks. The primary endpoint was the change in urinary IgA1 excretion rate at week 12.

Results

At week 12, the felzabartamab group showed a significant reduction in urinary IgA1 excretion rate compared to the placebo group (mean difference -0.14 mg/day, 95% CI -0.28 to -0.01, $P = 0.04$). There was no significant difference in adverse events between the two groups.

Conclusion

Felzabartamab significantly reduces IgA1 nephropathy-associated markers in a Phase 2 trial.

Results of a randomized double-blind placebo-controlled Phase 2 study propose ipzelogam as an alternative complement pathway inhibitor for IgA1 nephropathy

Abstract

Ipzelogam significantly reduces IgA1 nephropathy-associated markers in a Phase 2 trial.

Background

IgA1 nephropathy is a heterogeneous disease with significant heterogeneity in clinical presentation and response to therapy. The pathophysiology of IgA1 nephropathy is not fully understood, but it is believed to involve IgA1 deposits in the glomeruli and tubular basement membranes, leading to tubular dysfunction and proteinuria.

Objectives

The aim of this study was to evaluate the efficacy and safety of ipzelogam in the treatment of IgA1 nephropathy.

Methods

A randomized, double-blind, placebo-controlled trial was conducted in 40 patients with IgA1 nephropathy. Patients were assigned to receive ipzelogam (100 mg every 2 weeks) or placebo for 12 weeks. The primary endpoint was the change in urinary IgA1 excretion rate at week 12.

Results

At week 12, the ipzelogam group showed a significant reduction in urinary IgA1 excretion rate compared to the placebo group (mean difference -0.14 mg/day, 95% CI -0.28 to -0.01, $P = 0.04$). There was no significant difference in adverse events between the two groups.

Conclusion

Ipzelogam significantly reduces IgA1 nephropathy-associated markers in a Phase 2 trial.

Efficacy and Safety of Raszilumab in IgA Nephropathy: A Phase 2 Randomized Double-Blind Placebo-Controlled Trial

Abstract

Raszilumab significantly reduces IgA1 nephropathy-associated markers in a Phase 2 trial.

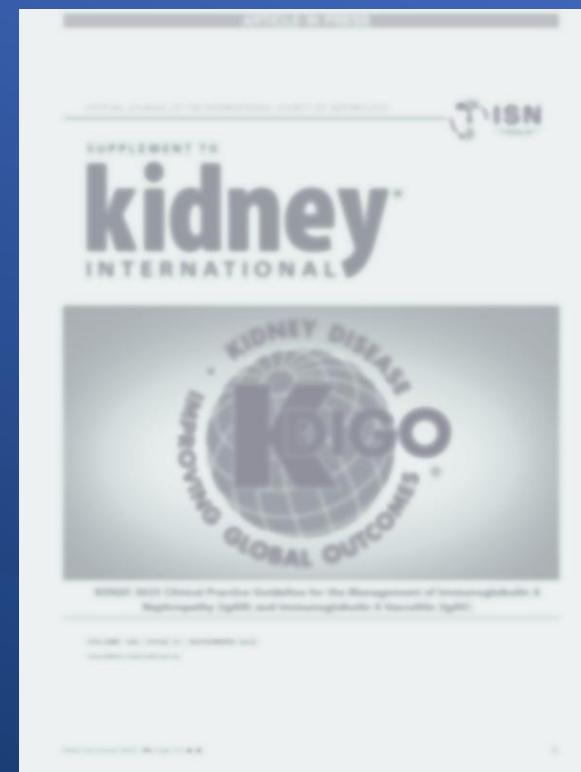
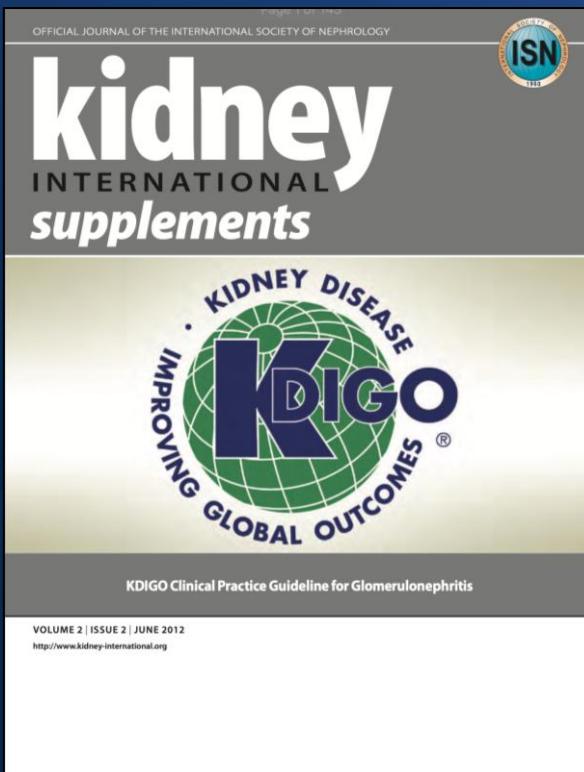
Background

IgA1 nephropathy is a heterogeneous disease with significant heterogeneity in clinical presentation and response to therapy. The pathophysiology of IgA1 nephropathy is not fully understood, but it is believed to involve IgA1 deposits in the glomeruli and tubular basement membranes, leading to tubular dysfunction and proteinuria.

Objectives

The aim of this study was to evaluate the efficacy and safety of raszilumab in the treatment of IgA1 nephropathy.

Methods



A randomized, double-blind, placebo-controlled trial was conducted in 40 patients with IgA1 nephropathy. Patients were assigned to receive raszilumab (100 mg every 2 weeks) or placebo for 12 weeks. The primary endpoint was the change in urinary IgA1 excretion rate at week 12.

Results

At week 12, the raszilumab group showed a significant reduction in urinary IgA1 excretion rate compared to the placebo group (mean difference -0.14 mg/day, 95% CI -0.28 to -0.01, $P = 0.04$). There was no significant difference in adverse events between the two groups.

Conclusion

Raszilumab significantly reduces IgA1 nephropathy-associated markers in a Phase 2 trial.

