

An Overview **Bartter & Gitelman Syndrome**

CAROLINE ENG
PAEDIATRIC NEPHROLOGIST
TUANKU JA'AFAR HOSPITAL, SEREMBAN
MALAYSIA

#Case Vignette One

A 3-year-old girl, TKZ

- Referred for evaluation of **failure to thrive**.
- Been smaller than her peers and had a poor appetite.
- Mother thought she urinates frequently (polyuria), often soaking through her diapers.
- History of maternal polyhydramnios during the third trimester of pregnancy, although the child was born at term.

- **Vitals:** Blood pressure was in the **normal** range for age (95/60 mmHg).
- **Growth:** Weight and height were **below the 3rd percentile for her age**.
- **General:** thin with signs of mild dehydration, including dry mucous membranes and decreased skin turgor.
- **Head and Neck:** No dysmorphic facial features are noted.
- **Cardiovascular/Respiratory/Abdominal Exams:** Unremarkable.

Sodium (Na+). 132 mEq/L	Bicarbonate (HCO3-). 30 mEq/L
Potassium (K+)2.5 mEq/L	Serum Magnesium. 0.5mmol/L
Chloride (Cl-)88 mEq/L	Corrected Calcium. 2.30 mmol/L

WES analysis: homozygous loss-of-function mutation in the ***CLCNKB* gene**, which encodes the ClC-Kb chloride channel

#Case Vignette Two

At 2 (taken with permission)

Ex-prematurity at 27 weeks (Birth weight 1.5kg) with a maternal history of polyhydramnios. Had a brief episode of Neonatal AKI, which was attributed to fluid restriction for a concurrent patent ductus arteriosus, and creatinine upon discharge declined from a peak of 160 to 50s umol/L.

- Lost from follow-up; she presented again with failure to thrive (4.3kg at 1 year) and subtle facial dysmorphism (triangular face, frontal bossing and small chin)
- She had polyuria (up to 8ml/kg/hr) and polydipsia
- Pressures normotensive
- Initial investigations showed electrolyte abnormalities: metabolic alkalosis with hypokalemia ($K \sim 2.2-2.8$) and hypernatremia ($Na \sim 150-155$) to which she remained asymptomatic.
- Creatinine 50 umol/L
- Corrected Calcium borderline low 1.8-2.0
- Urine Calcium Creatinine ratio 2.06 mg/mg
- High urine chloride FeCl >0.5%
- USG Kidney showed early nephrocalcinosis

- ❖ Serum Renin & aldosterone were elevated
- ❖ Whole exome sequencing:

Gene	Variant	Classification	Disease
SLC12A1	15-48543951-GA-G NM_000338.3:c.1927del (NP_000329.2:p.Thr643LeufsTer7) Homozygous	Likely pathogenic	Bartter syndrome, type 1

Positive

A likely pathogenic variant was identified.

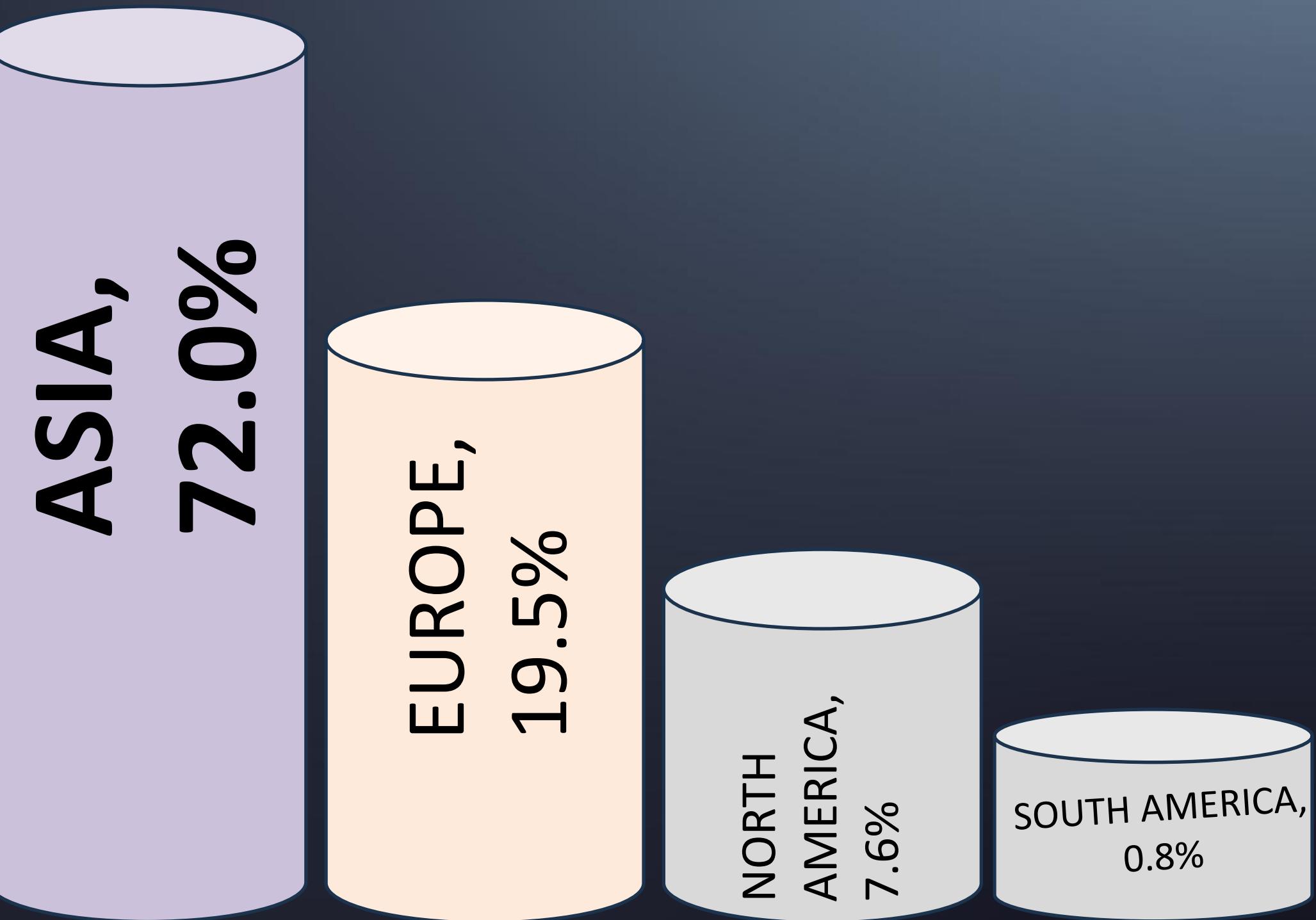
Search for...

CLINICAL STUDY · Volume 33, Issue 6, P811-828, December 1962

 Download Full Issue

Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis

A new syndrome

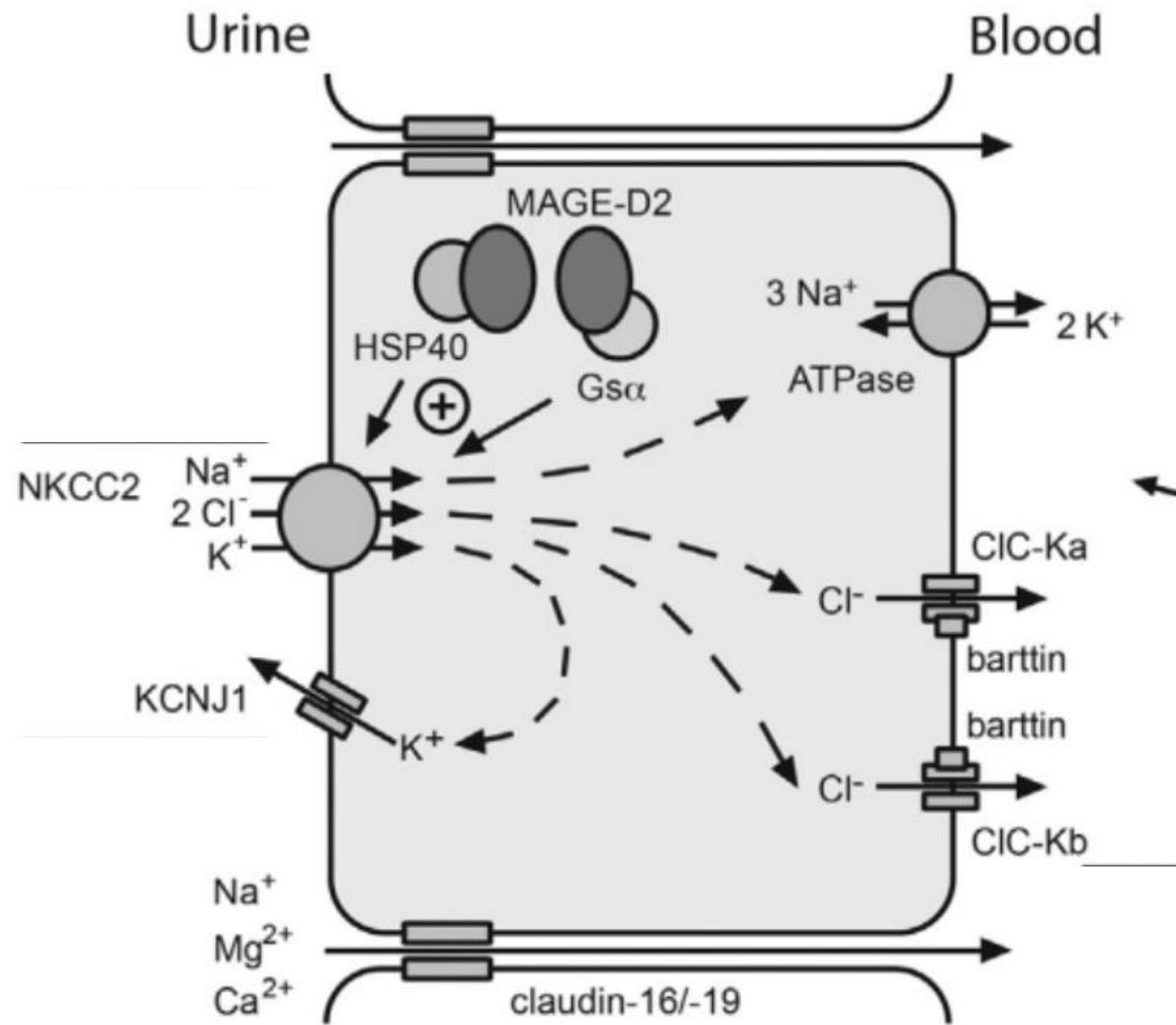

Frederic C. Bartter, M.D. · Pacita Pronove, M.D. · John R. Gill, Jr., M.D. · Ross C. MacCardle, Ph.D.

- ❖ Dr Frederic Bartter and his colleagues in 1962
- ❖ in a seminal paper in the December issue of the American Journal of

Bartter Syndrome Overview

1 IN 1,000,000 -1,200,000 PEOPLE (more uncommon than GS)

Qasba, R. K., et al
Bartter Syndrome: A Systematic Review of Case Reports and Case Series. *Medicina*, 59(9), 1638.


Inherited salt-losing tubulopathy: An old condition but a new category of tubulopathy

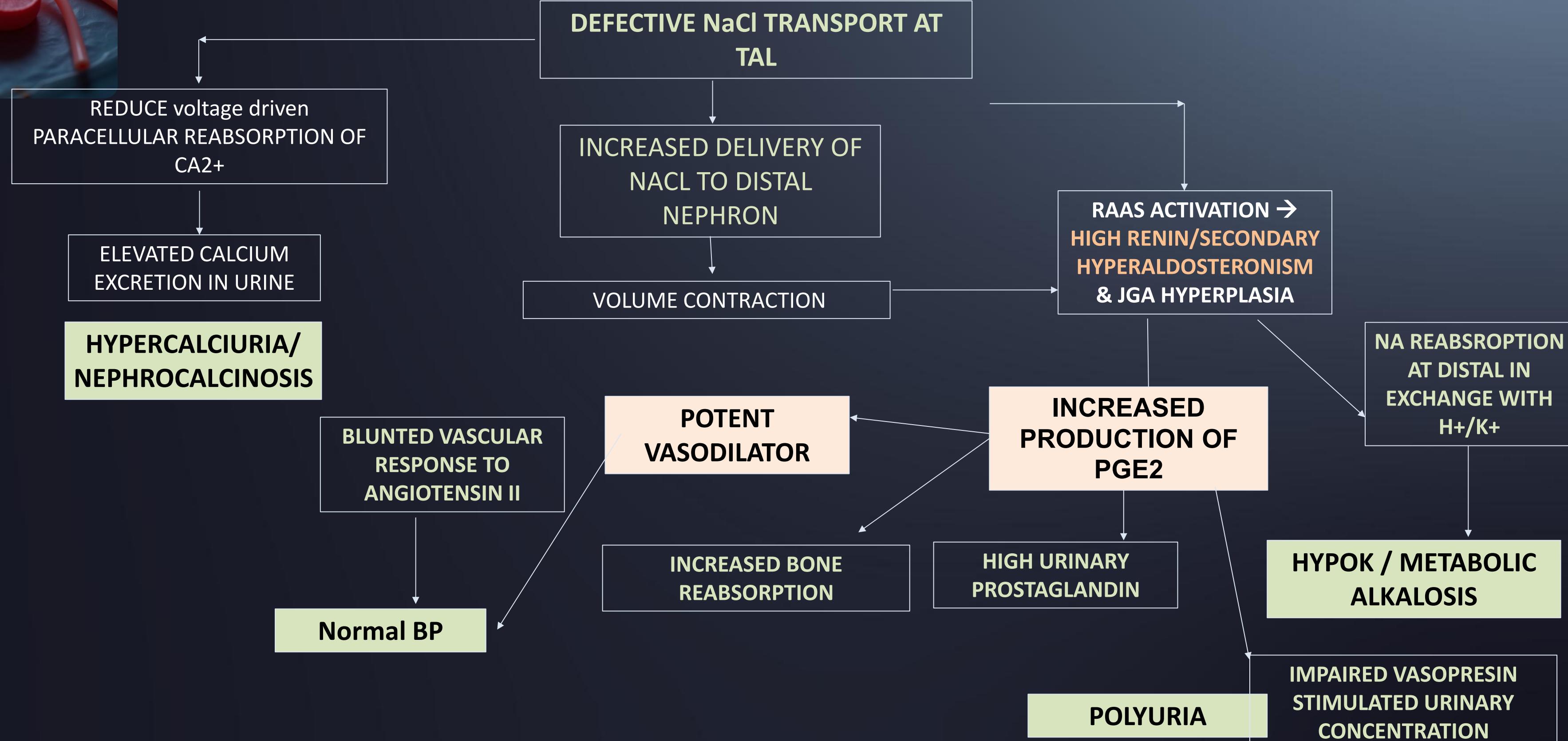
Kandai Nozu ¹, Tomohiko Yamamura ¹, Tomoko Horinouchi ¹, China Nagano ¹,
Nana Sakakibara ¹, Kenji Ishikura ², Riku Hamada ³, Naoya Morisada ¹, Kazumoto Iijima ¹

Bartter syndrome (BS) and Gitelman syndrome (GS) are syndromes associated with congenital tubular dysfunction, characterized by hypokalemia and metabolic alkalosis. Clinically, BS is classified into two types: the severe antenatal/neonatal type, which develops during the fetal period with polyhydramnios and preterm delivery; and the relatively mild classic type, which is usually found during infancy with failure to thrive. GS can be clinically differentiated from BS by its age at onset, usually after school age, or laboratory findings of hypomagnesemia and hypocalciuria.

Recent advances in molecular biology have shown that these diseases can be genetically classified into type 1 to 5 BS and GS. As a result, it has become clear that the clinical classification of antenatal/neonatal BS, classic BS, and GS does not always correspond to the clinical symptoms associated with the genotypes in a one-to-one manner; and there is clinically no clear differential border between type 3 BS and GS. This has caused confusion among clinicians in the diagnosis of

Thick ascending limb

**NKCC is a luminal channel
responsible for reabsorption of
sodium along with chloride and
potassium**

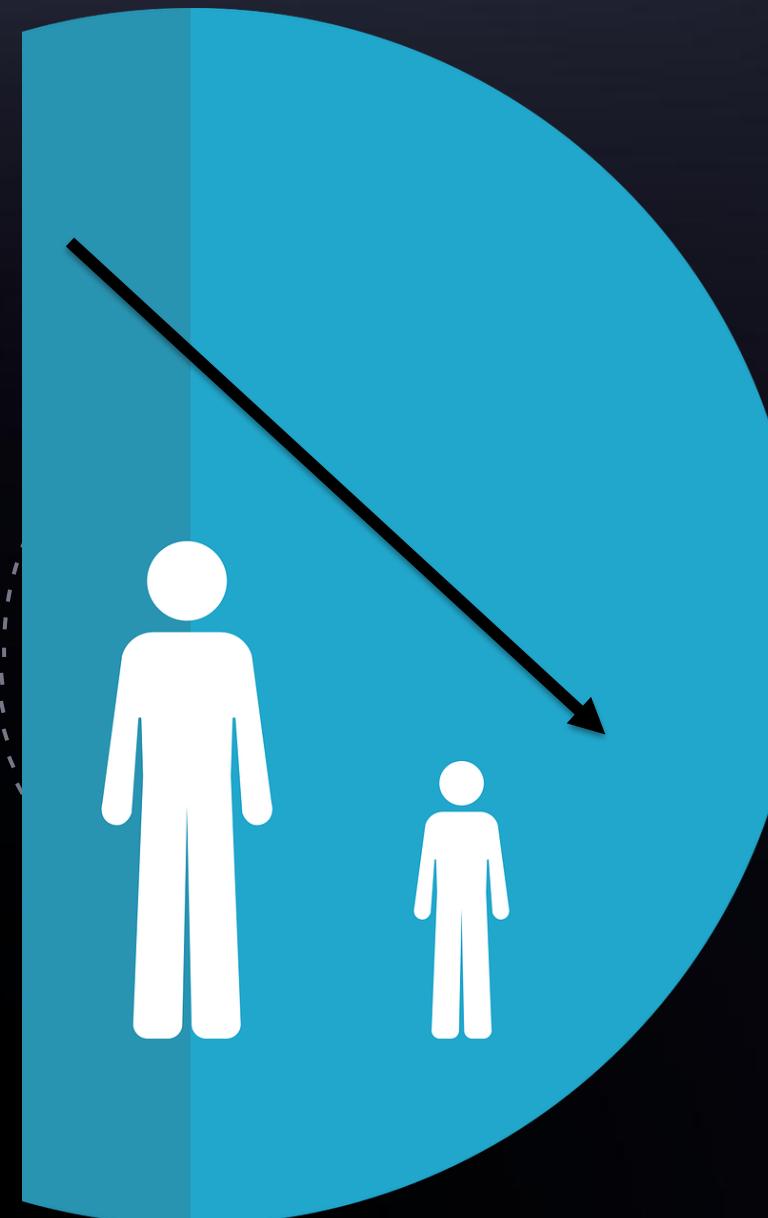

- NKCC: key transporter at the TAL Loop of Henle to reabsorb sodium, potassium, and chloride ions from the tubular lumen
- ROMK - recycles potassium
- Basolateral side: Na⁺-K⁺-ATPase pump maintains the sodium gradient
- Basolateral chloride channels from the CIC family enable chloride exit
- Mg and Cal reabsorption – down the electrochemical gradient

Thick ascending limb

Across the board, any form of genetic mutation ultimately ...

Clinical Presentation of Bartter Syndrome

CHARACTERISTICS	TYPE 1	TYPE 2	TYPE 3	TYPE 4	TYPE 5
Gene	SLC12A1	KCNJ1	CLCNKB	BSND CLCNKA / B	MAGED2
Inheritance	AR	AR	AR	AR	XLR
Age onset	Prenatal	Prenatal	0-5yr / "Classical"	Prenatal	Prenatal
Polyhydramnios	Severe	Severe	Mild / Absent	Severe	Severe
Clinical features	Polyuria, hypochloremia, Hypokalemia, metabolic alkalosis, Failure to thrive				
Hypokalemia	+	+	+++	+++	+
Hypercalciuria	++	++	+/-	+/-	+
Nephrocalcinosis	Very Frequent		Rare / mild		
Others			Mild hypoMagnesemia	Sensorineural hearing loss	Transient disease; resolves by term
	High risk of progressing to ESKD		Most severe form, HIGHER RISK OF progressing to ESKD		

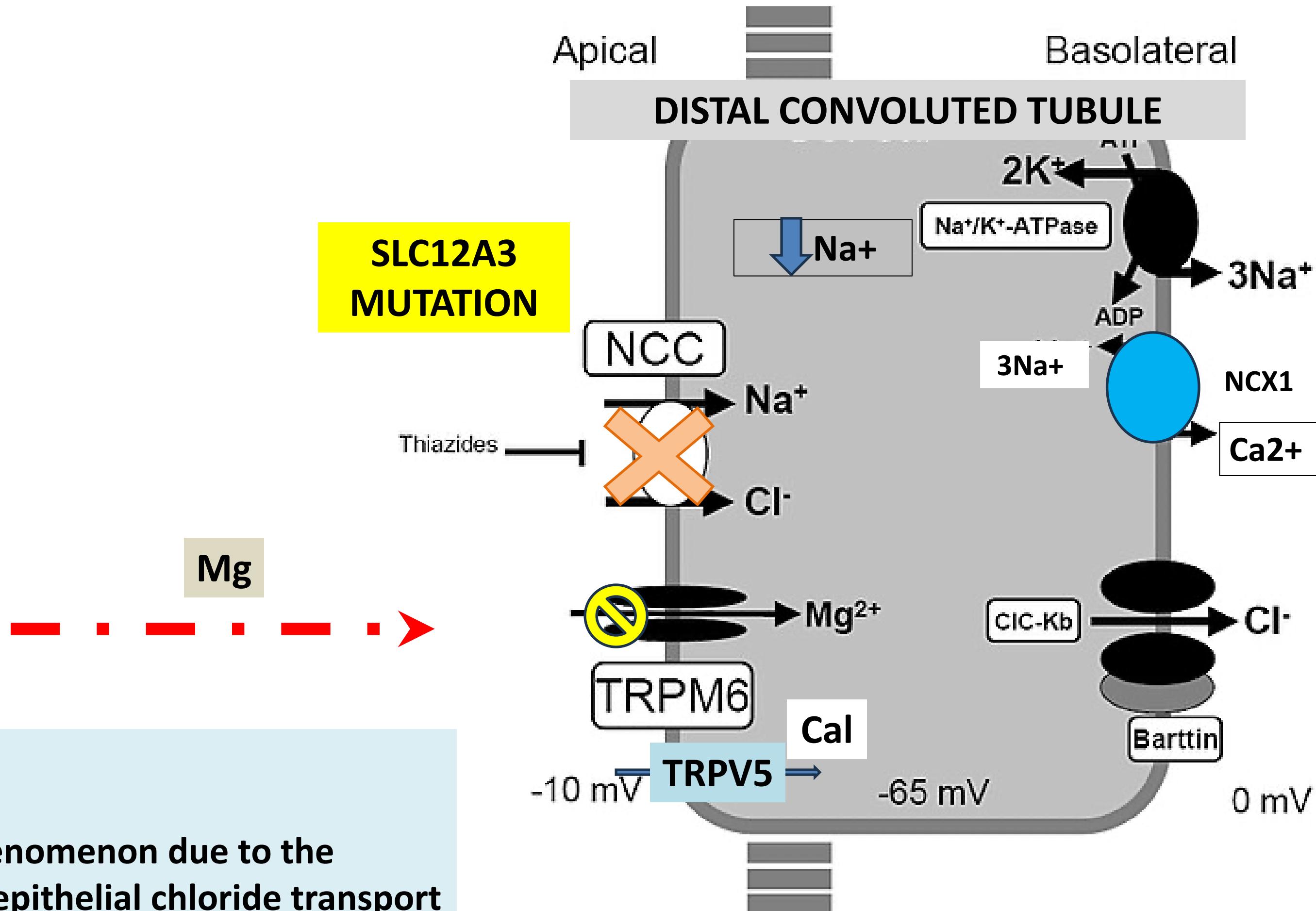

#Case Vignette Three

A 14 year old boy AR

- Admitted for trauma. Incidentally picked up to have metabolic alkalosis with abnormal electrolytes.
- BP in the ward was noted to be low normal.

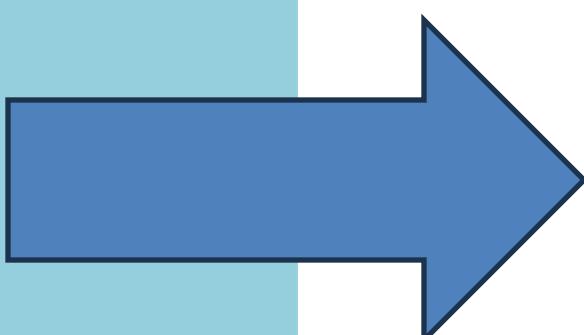
Sodium (Na+). 125 mEq/L	Blood pH 7.48. Bicarbonate (HCO ₃ -). 30 mEq/L
Potassium (K⁺) 2.4 mEq/L	Serum Magnesium. 0.4mmol/L
Chloride (Cl ⁻) 94 mEq/L	Corrected Calcium. 2.1 mmol/L

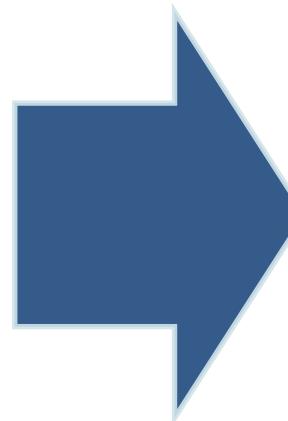
Subsequent investigation : HYPOCALCIURIA
USG Kidney: Normal study


Gitelman Syndrome Overview

In 1966, Dr Hiller Gitelman (*University of North Carolina School of Medicine*) and his colleagues first identified and described this inherited kidney condition.

- 1 to 10 in 40,000;
- with higher prevalence in Asia
- **Most of the time, this is fortuitously diagnosed**

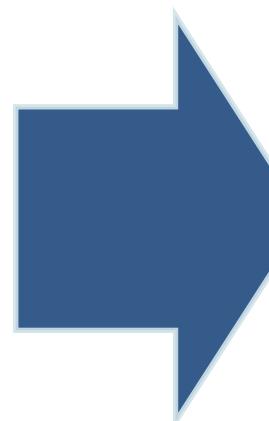
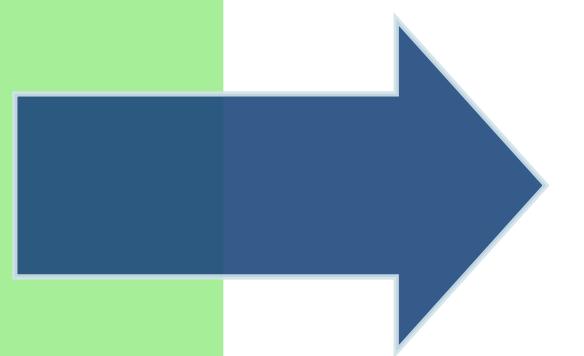

- ❖ **Mild features**
- ❖ **Occurring late in Adolescence/ adulthood**
- ❖ **Severe phenotype < 6 years old has been described**


❖ A phenomenon due to the
Transepithelial chloride transport
defect in the DCT

Clinical features in GS

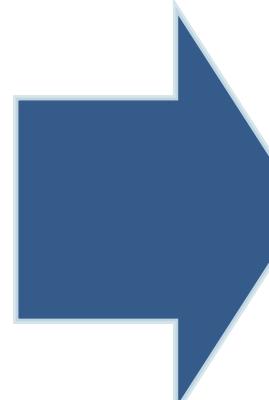
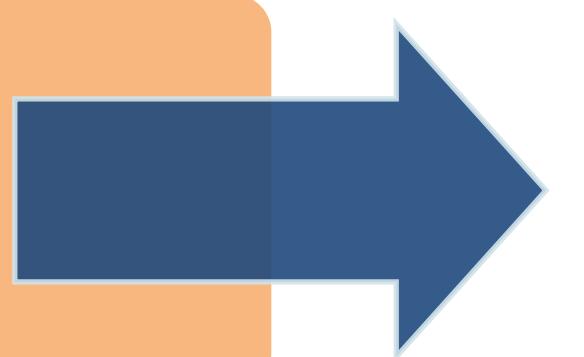
Defect at NCC →
increased delivery of Na
to distal nephron

Volume
contraction

Heightened
absorption of NA
in exchange of
K⁺ /H⁺

HIGH RENIN with
SECONDARY
HYPERALDOSTERO
NISM



- HYPOKALEMIC
METABOLIC
ALKALOSIS

Intensified Calcium
absorption

- HYPOCALCIURIA
- ABSENCE OF
NEPHROCALCINOSIS

Reduced
Magnesium
absorption

- HYPMAGNESEMIA
- CHONDROCALCINOSIS /
SCLEROCHOROIDAL
CALCIFICATIONS

MANAGEMENT PLANNING ~ BS / GS

IMPORTANT TO MAINTAIN HOMEOSTASIS

- Infants and young children – every 3-6 months
 - Depending on severity
 - To ensure adequate metabolic control
 - Growth and psychomotor development

- Older children- established therapy and stable, every 6-12 months

BS & GS : treatment & mx plan

01 SALT SUPPLEMENTATION -
5-10mmol/kg/day Naci
avoid in children with secondary NDI

02 K SUPPLEMENTATION

03 MAGNESIUM*
When needed, oral Mg salts preferred

04 NSAIDS ie Indomethacin / ibuprofen
For symptomatic patients especially during early childhood

05 SUPPLEMENTS DOSING
Try spread over the day as much as possible

06 SPECIAL CONSIDERATIONS
Sick day rules, especially during illness with vomiting/diarrhoea

CAUTION

01 K-sparing diuretics, ACEI & ARB
Na reabsorption in collecting duct is compensatory

02 THIAZIDE
risk of causing hypovolemia and should not be used routinely

BARTTER SYNDROME

GITELMAN SYNDROME

executive summary

www.kidney-international.org

OPEN

Diagnosis and management of Bartter syndrome: executive summary of the consensus and recommendations from the European Rare Kidney Disease Reference Network Working Group for Tubular Disorders

**Salt craving and high spontaneous salt intake is typical for individual with BS.

NA supp: usually needed especially in younger children. *CAUTION when patient has secondary DI – risk of hyperNa dehydration.*

Encourage patients to follow their propensity for salt consumption.

Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

OPEN

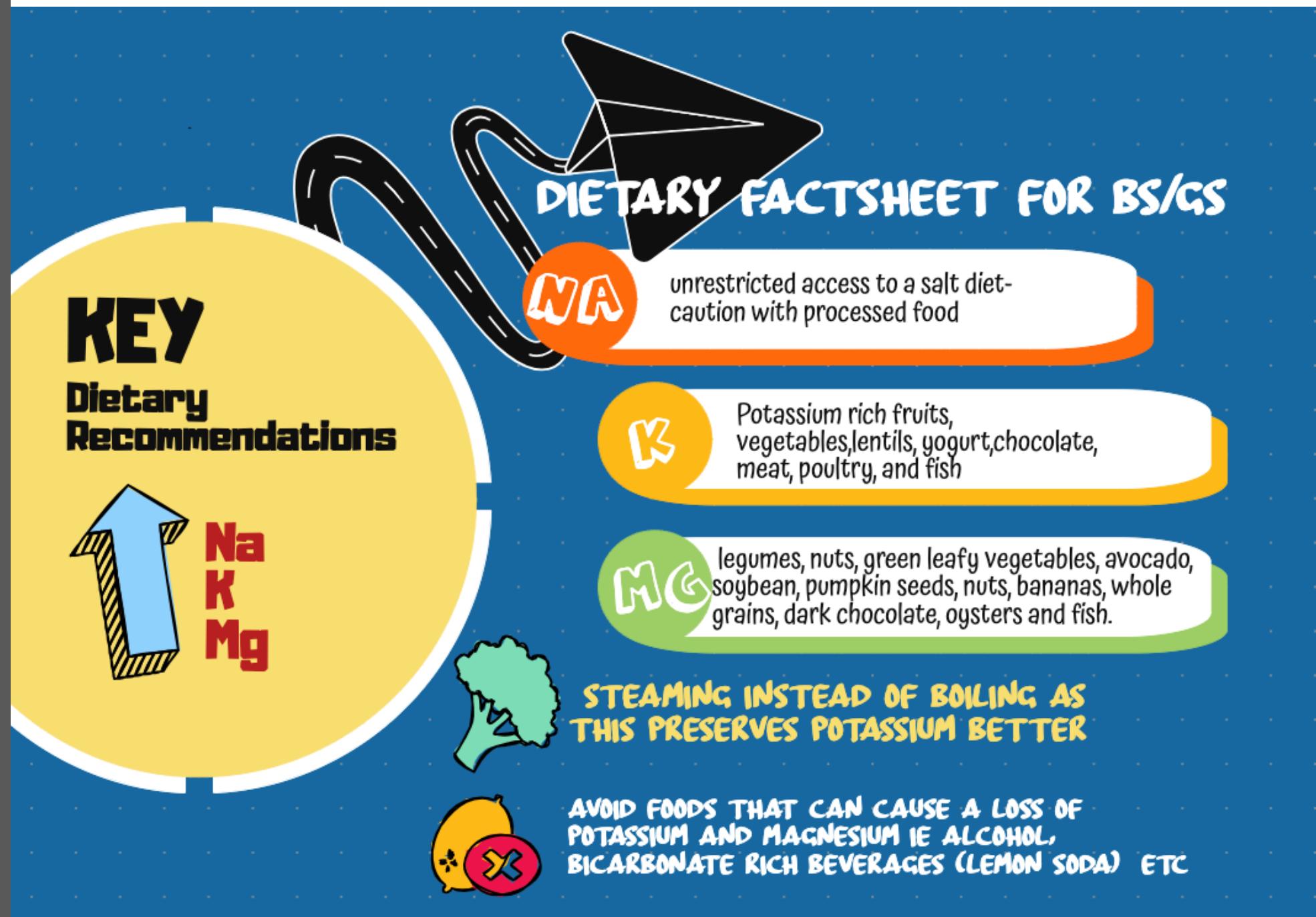
Anne Blanchard^{1,2,3,4}, Detlef Bockenhauer^{5,6}, Davide Bolignano⁷, Lorenzo A. Calò⁸, Etienne Cosyns⁹, Olivier Devuyst¹⁰, David H. Ellison¹¹, Fiona E. Karet Frankl^{12,13}, Nine V.A.M. Knoers¹⁴, Martin Konrad¹⁵, Shih-Hua Lin^{16,17} and Rosa Vargas-Pousou^{2,18}

MG: *May be needed in BS Type 3*

NSAIDS: helpful to improve electrolyte profile and growth parameters. Tapering or cessation may be possible in stable patients. Caution with chronic use and use during pregnancy.

MG: Vital to correct this first in GS as Mg repletion facilitates K repletion. Organic salts (e.g. aspartate, citrate, lactate) offer higher bioavailability. **Target >0.6**

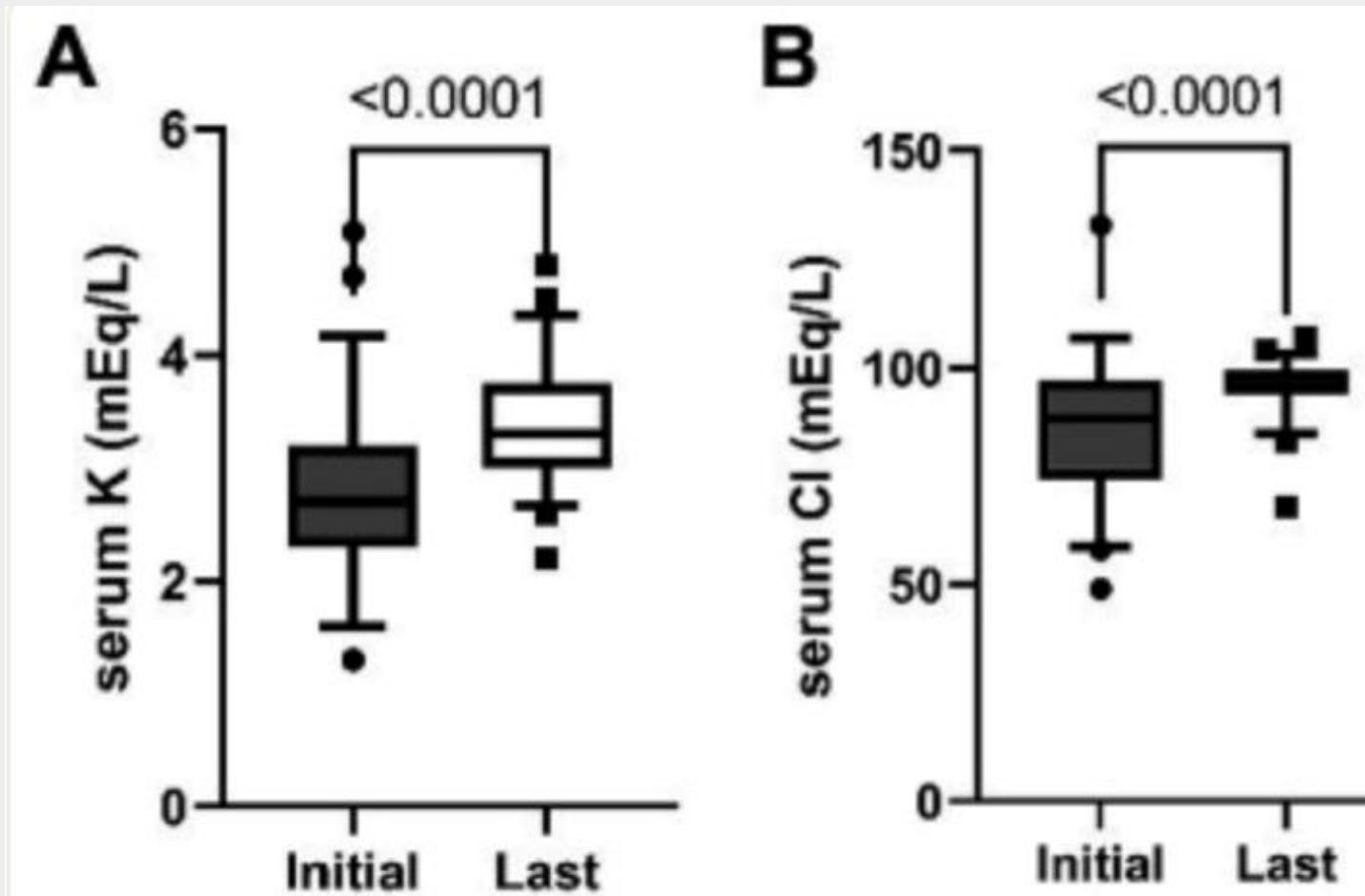
K SPARING/ACEI &ARB: ? used in difficult-to-treat symptomatic hypokalemia with caution to avoid hypotension. Caution: drugs may worsen renal sodium wasting/risk of symptomatic hypovolemia

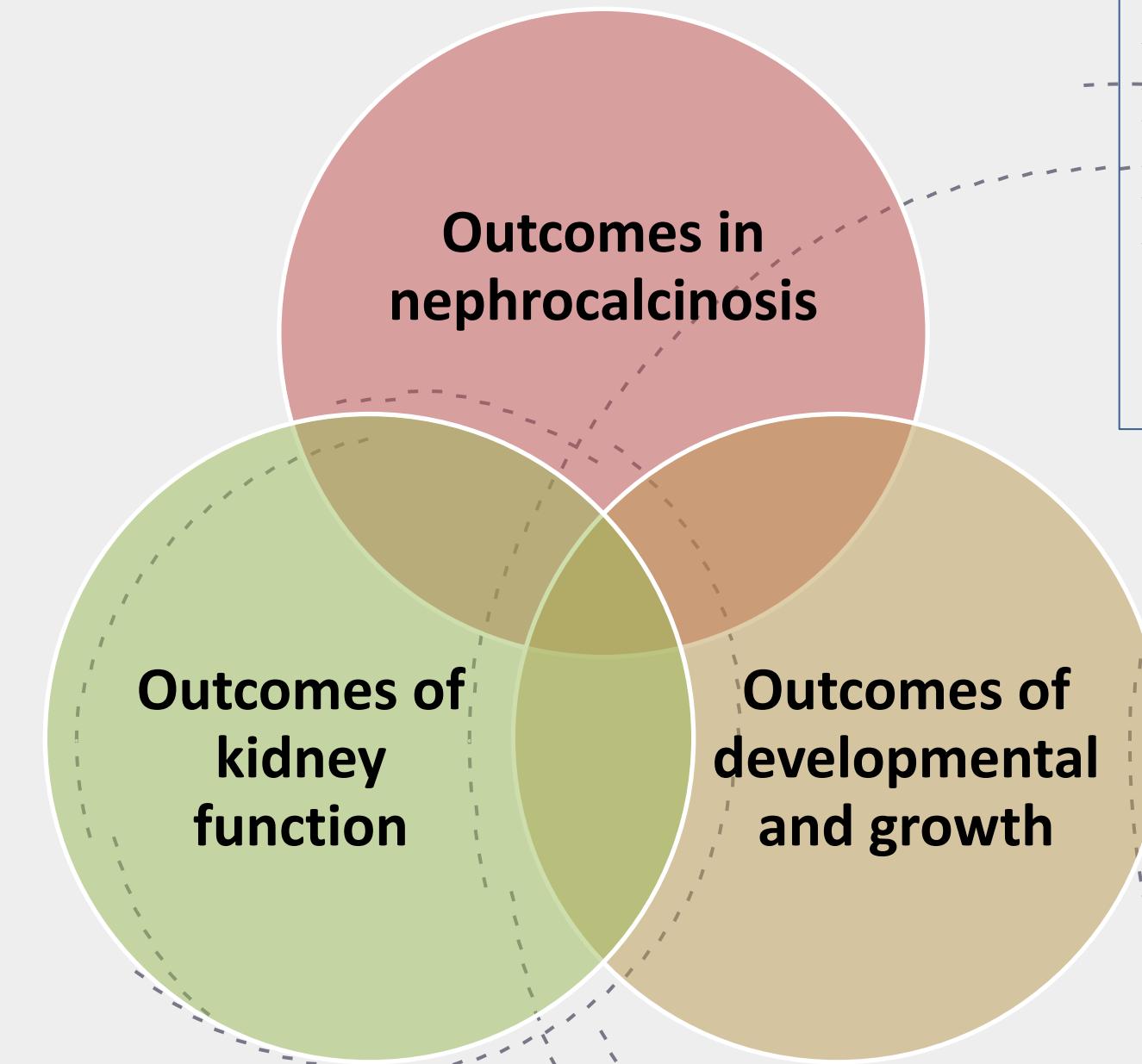

THIAZIDE : ? to reduce hypercalciuria (no data on efficacy in BS). Not routine, to be used with caution

The Dietary Approach to the Treatment of the Rare Genetic Tubulopathies Gitelman's and Bartter's Syndromes

Francesco Francini ¹, Laura Gobbi ², Verdiana Ravarotto ², Silvia Tonazzzo ¹, Federico Naleッo ², Paolo Spinella ¹, Lorenzo A Calò ²

Affiliations + expand


PMID: 34578838 PMCID: PMC8467039 DOI: 10.3390/nu13092960


- A dietary approach to BS and GS complements medical therapy through modifying the consumption of sodium, potassium, and magnesium-rich foods and/or supplements containing these minerals.
- A nutritional consultation should be made available
- Would allow individuals and families to **live better** with the disease

Long-term outcome of Bartter syndrome in 54 patients: A multicenter study in Korea

Choi N, Kim SH, Bae EH, Yang EM, Lee KH, Lee SH, Lee JH, Ahn YH, Cheong HI, Kang HG, Hyun HS, Kim JH. Front Med (Lausanne). 2023 Mar 13;10:1099840.

BS patients require a large amount of potassium supplementation along with potassium-sparing agents throughout their lives, but tend to improve with age.

- Observed in 35% of cohort
- 100% in BS 1 / 2
- 12.5% in BS3
- Disappearance of Nephrocalcinosis in 4 patients

- 6 out of 54 (11%) of the patients developed at least CKD 3 – with a median age in the 3rd decade in the CKD group
- Only one had nephrocalcinosis

- 41% remained short (height <3rd percentile) at the last visit
- Noteworthy, 3 patients from this cohort had GH

Clinical Characteristics, Symptoms and Long-term Outcomes in Gitelman Syndrome

Methods and cohort

Electronic survey through ERKNet*

N = 587 (13 countries, 148 pediatric)

61% males in pediatric subgroup, 60% females in adult subgroup

Genetic test in 93% with SLC12A3 variants in 94% (73% compound heterozygous, 27% homozygous)

*Physician survey Jan - Aug 2024; Patient survey using Patient-Reported Outcomes Measurement Information System/PROMIS (Netherlands, Oct 24 – Jan 25)

Findings

Growth & Body weight

Children are shorter & lighter (To general population)
Lower body weight persisted into adulthood [Weight – 2SD in 11%]

Laboratory values

Blood potassium, magnesium, sodium, chloride, and phosphate were lower than in the general population, while blood calcium and bicarbonate were higher

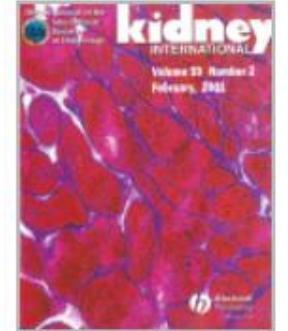
Long-term outcome

Adults had lower rates of CKD and HTN, but a higher rate of albuminuria or proteinuria than the general population

Reported symptoms

Fatigue, muscle cramps & salt craving in children (20-24%) & adults (25-60%)
Lower blood potassium & magnesium correlates with higher symptom score

Extrarenal features: Adults had a high prevalence of chondrocalcinosis (15%) and elevated blood cell counts (26%)


Conclusion This study provides new insights into Gitelman Syndrome, highlights the disease burden and areas for future

Quality of Life , QoL

Kidney International

Volume 59, Issue 2, February 2001, Pages 710-717

GS is not an asymptomatic disease

Clinical Nephrology – Epidemiology – Clinical Trials

Gitelman's syndrome revisited: An evaluation of symptoms and health-related quality of life

Dinna N. Cruz , Andrea J. Shaer , Margaret J. Bia , Richard P. Lifton ,
David B. Simon

50 adult GS patients with confirmed mutations

The most common symptoms were salt craving, with musculoskeletal symptoms such as cramps, muscle weakness, and aches and constitutional symptoms such as fatigue, generalized weakness and dizziness, and nocturia and polydipsia.

Significantly LOW
QoL score from
control

References:

1. Qasba, R. K., Bucharles, A. C. F., Piccoli, M. V. F., Sharma, P., Banga, A., Kamaraj, B., Nawaz, F. A., Kumar, H. J., Happy, M. A., Qasba, R. K., Kogilathota Jagirdhar, G. S., Essar, M. Y., Garg, P., Reddy, S. T., Rama, K., Surani, S., & Kashyap, R. (2023). Bartter Syndrome: A Systematic Review of Case Reports and Case Series. *Medicina*, 59(9), 1638.
2. Konrad M, Nijenhuis T, Ariceta G, Bertholet-Thomas A, Calò LA, Capasso G, Emma F, Schlingmann KP, Singh M, Trepiccione F, Walsh SB, Whittington K, Vargas-Poussou R, Bockenhauer D. Diagnosis and management of Bartter syndrome: executive summary of the consensus and recommendations from the European Rare Kidney Disease Reference Network Working Group for Tubular Disorders. *Kidney Int.* 2021 Feb;99(2):324-335. doi: 10.1016/j.kint.2020.10.035. PMID: 33509356.
3. Bettinelli A, Bianchetti MG, Girardin E, Caringella A, Cecconi M, Appiani AC, Pavanello L, Gastaldi R, Isimbaldi C, Lama G, et al. Use of calcium excretion values to distinguish two forms of primary renal tubular hypokalemic alkalosis: Bartter and Gitelman syndromes. *J Pediatr.* 1992 Jan;120(1):38-43. doi: 10.1016/s0022-3476(05)80594-3. PMID: 1731022.
4. Shaer AJ. Inherited primary renal tubular hypokalemic alkalosis: a review of Gitelman and Bartter syndromes. *Am J Med Sci.* 2001 Dec;322(6):316-32. doi: 10.1097/00000441-200112000-00004. PMID: 11780689.
5. Choi N, Kim SH, Bae EH, Yang EM, Lee KH, Lee SH, Lee JH, Ahn YH, Cheong HI, Kang HG, Hyun HS, Kim JH. Long-term outcome of Bartter syndrome in 54 patients: A multicenter study in Korea. *Front Med (Lausanne)*. 2023 Mar 13;10:1099840. doi: 10.3389/fmed.2023.1099840. Erratum in: *Front Med (Lausanne)*. 2023 May 31;10:1225353. doi: 10.3389/fmed.2023.1225353. PMID: 36993809; PMCID: PMC10040751.
6. Nozu K, Yamamura T, Horinouchi T, Nagano C, Sakakibara N, Ishikura K, Hamada R, Morisada N, Iijima K. Inherited salt-losing tubulopathy: An old condition but a new category of tubulopathy. *Pediatr Int.* 2020 Apr;62(4):428-437. doi: 10.1111/ped.14089. Epub 2020 Apr 13. PMID: 31830341.
7. Blanchard A, Bockenhauer D, Bolignano D, Calò LA, Cosyns E, Devuyst O, Ellison DH, Karet Frankl FE, Knoers NV, Konrad M, Lin SH, Vargas-Poussou R. Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. *Kidney Int.* 2017 Jan;91(1):24-33. doi: 10.1016/j.kint.2016.09.046. PMID: 28003083.
8. Lee JW, Lee J, Heo NJ, Cheong HI, Han JS. Mutations in SLC12A3 and CLCNKB and Their Correlation with Clinical Phenotype in Patients with Gitelman and Gitelman-like Syndrome. *J Korean Med Sci.* 2016 Jan;31(1):47-54. doi: 10.3346/jkms.2016.31.1.47. Epub 2015 Dec 24. Erratum in: *J Korean Med Sci.* 2016 May;31(5):827. doi: 10.3346/jkms.2016.31.5.827. PMID: 26770037; PMCID: PMC4712579.
9. Francini F, Gobbi L, Ravarotto V, Tonizzone S, Naleッso F, Spinella P, Calò LA. The Dietary Approach to the Treatment of the Rare Genetic Tubulopathies Gitelman's and Bartter's Syndromes. *Nutrients*. 2021 Aug 26;13(9):2960. doi: 10.3390/nu13092960. PMID: 34578838; PMCID: PMC8467039.
10. Wieërs M LAJ, Allard L, D'Ambrosio V, Arango-Sancho P, de Baaij JHF, Becherucci F, Bertholet-Thomas A, Besouw M, Blanchard A, Cacciapuoti M, Carbone V, Cornelissen EA, Daffara F, Degenhardt J, Devuyst O, Dorresteijn E, Evans R, Figueres L, Fila M, Giliberti M, Gillion V, Haumann S, Hawkins-van der Cingel G, Houillier P, Hureaux M, Knauf F, Knebelmann B, Konrad M, Kwon T, Lemoine S, Longo G, Nijenhuis T, Engberink RHGO, Duro HR, Saadé C, Sayer JA, Schlingmann KP, Simon T, Speeckaert MM, Tan HL, Trepiccione F, Vargas-Poussou R, Veligratti F, Walsh SB, Salih M, Jimenez Silva PH, Hoorn EJ; Gitelman Survey Study. Clinical Characteristics, Symptoms, and Long-Term Outcomes in Gitelman Syndrome. *Kidney Int Rep.* 2025 Sep 4;10(11):3967-3983. doi: 10.1016/j.kir.2025.09.006. PMID: 41278357; PMCID: PMC12640036.
11. Zhang T, Ke Y, Lei Z, Zhu X, Mou L. The osteoarticular features of Gitelman Syndrome: Chondrocalcinosis and more. *Semin Arthritis Rheum.* 2025 Nov 16;75:152883. doi: 10.1016/j.semarthrit.2025.152883. Epub ahead of print. PMID: 41273824.
12. Lee SE, Han KH, Jung YH, Lee HK, Kang HG, Moon KC, Ha IS, Choi Y, Cheong HI. Renal transplantation in a patient with Bartter syndrome and glomerulosclerosis. *Korean J Pediatr.* 2011 Jan;54(1):36-9. doi: 10.3345/kjp.2011.54.1.36. Epub 2011 Jan 31. PMID: 21359059; PMCID: PMC3040364.
13. Chaudhuri A, Salvatierra O Jr, Alexander SR, Sarwal MM. Option of pre-emptive nephrectomy and renal transplantation for Bartter's syndrome. *Pediatr Transplant.* 2006 Mar;10(2):266-70. doi: 10.1111/j.1399-3046.2005.00435.x. PMID: 16573620.
14. Calò LA, Marchini F, Davis PA, Rigotti P, Pagnin E, Semplicini A. Kidney transplant in Gitelman's syndrome. Report of the first case. *J Nephrol.* 2003 Jan-Feb;16(1):144-7. PMID: 12649546.

THANK YOU

CAROLINESYENG@MOH.GOV.MY

