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A) Healthy B) CKD patients . ., bacterial products,
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CKD-associated factors
Low fiber intake, metabolic acidosis,
antibiotics/medication use, increased intestinal
excretion of urea and other uremic toxins,
reduced gut motility, malnutrition, etc.
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The Gut Microbiome as a Risk Factor for Future
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Hellman T et al, 2025 Conclusion: Our results suggest that decreased gut microbial diversity may be related to risk

K | R E PO R T S R — of future CKD and that a potential link between the Lachnospiraceae family and desirable
Yidnay inferiational Nepoith Hﬁ:: = Ag;zr:yer,yMD kidney health exists. Our results extend previous cross-sectional studies and help to establish

X @HusamJz the basis for examining the gut microbiome as a CKD risk factor.
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The Gut-Kidney Connection:

How Your Microbiome Drives Chronic Kidney Disease

The Problem: A Toxic Microbiome Accelerates CKD

CKD Patients Have This Altered Microbiome
a Distinctly Altered Produces More

Gut Microbiome Uremic Toxins (UTs)

It is enriched with toxin-producing  Patients with severe CKD
species like Enterocloster have higher levels of UTs

and Hungatella. in their blood.

Gut Dysbiosis is
Linked to CKD Severity

“Beneficial” bacteria
like Faecalibacterium
prausnitzii are depleted
in severe CKD.

Proof of Causality & A Potential Solution

Proof: Transplanting a “CKD Microbiome”
Harms Kidneys in Mice

Mice receiving microbiota from
CKD patients developed
increased kidney fibrosis and
higher toxin levels.

CKD Microbiome Recipient

Diet Can Counteract Toxic Changes Over Time

In a 3-year follow-up, higher vegetable and lower protein
intake was linked to fewer toxic gut species.

Gut. 2025 Sep 8;74(10):1624-1637
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CKD + HF

E. coli may contribute to the upregulation of IS via tryptophanase (ThaA)
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Difference in proportions
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Compared high vs low IAA level in hemodialytsis patients
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The correlation between specific Bacteroides species and ~ 16srRNA

baseline clinical biochemistry in hemodialysis patients
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Potential contribution of different size groups of uremic toxins
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Uremic toxin: EUTox reclassification: size and toxicity
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Absorption, and excretion pathway of gut-derived uremic toxins
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TLR2,4 or

1 Endothelial cell damage
1 Foam cell formation

A Vascular inflammation
N Insulin resistance

Acetate Propionate Butyrate
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“Blood pressure
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>, absorption synthesis phenotype

1 Atherosclerosis
(1 Cholesterol accumulation in cells of arterial wall)
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toxins
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Remote sensing and signaling: metabolites as signals for

inter-organ communication
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inter-organism communication
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Pathological role of organic anion transporters (OATs) in the
progression of uremia, atherosclerosis and kidney bone disease.
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KMUH 749 CKD stage 3-4 patients with pre-ESRD care program
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Association between circulating free form indoxyl sulfate levels and cognitive function test
scores in hemodialysis participants using linear regression analysis without and with
adjusted for confounders

Cognitive test

Mini-Mental State Examination
Cognitive Abilities Screening Instrument

Long term memory
Short term memory

Mental manipulation
Orientation

Abstract thinking
ET{VET{S

Spatial construction
Name fluency

Model 1: crude model

. Modell | Model2
B coefficient (95% CI) p value P coefficient (95% CI) p value
-0.97 (-1.56t0 -0.37)  0.001* -0.62(-1.16t0-0.08) 0.023*
-3.43 (-5.53to0-1.33) 0.001* -1.97(-3.78to0-0.16) 0.033*
-0.22 (-0.42t0-0.02)  0.030* -0.20(-0.39t0-0.01) 0.036*
-0.38 (-0.75 to 0.00) 0.050 -0.13(-0.47t00.21) 0.442
-0.19 (-0.41 to 0.04) 0.104 -0.1(-0.31to0.11) 0.343
-0.52 (-0.84 to -0.2) 0.001* -0.36(-0.65to0-0.06) 0.018*
-0.61 (-1.08 to -0.14)  0.011* -0.41(-0.87t00.04) 0.076
-0.45 (-0.82t0-0.09) 0.016* -0.19(-0.51t00.14) 0.264
-0.35(-0.56t0-0.13)  0.002* -0.25(-0.45t0-0.04) 0.018*
-0.53 (-0.92to -0.15)  0.006* -0.38(-0.73t0-0.03) 0.034*
-0.19 (-0.51 to 0.14) 0.270 0.05(-0.25t00.36) 0.728

Model 2: adjusted model with controlling for age, sex, education level, depression scale, and comorbidities (diabetes
mellitus, hypertension, coronary artery disease, and cerebrovascular disease), hemoglobin, blood urea nitrogen, Kt/V,

hemodialysis duration

Sci Rep. 2019 Dec 31;9(1):20388



Association between indole-3 acetic acid and cognitive function test in
hemodialysis participants using multivariable linear regression analysis

Indole-3 acetic acid

Cognitive test Model 1 Model 2 Model 3
-1.31 -0.95 -0.90

VVSE - g N
CASI -4.75 -3.29 -3.29
(-7.42, -1.86) (-5.77, -0.82) (-5.69, -0.88)

Model 1 is crude estimation

Model 2 is adjusted for age, sex, education level

Model 3 is adjusted for stepwise procedure selected covariates

In Indole-3 acetic acid analysis: Covariates selection of age, education, hyperlipidemia, albumin, sodium, potassium,
blood urea nitrogen, and Low-density lipoprotein in MMSE, Covariates selection of age, education, depression scale,
hyperlipidemia, heart failure, ion calcium, phosphate, magnesium, aluminum, blood urea nitrogen, alkaline phosphatase,
C-reactive protein, and triglyceride in MoCA, Covariates selection of age, education, hyperlipidemia, diabetes, albumin,
sodium, potassium, ion calcium, blood urea nitrogen, alkaline phosphatase, total cholesterol in CASI

Neurotoxicology. 2019 Jul;73:85-91




Indoxyl sulfate (IS) and p-cresol sulfate (PCS) levels were
elevated in various brain regions of 5/6 nephrectomy (5/6 NX)
animals compared with the levels in sham animals
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= Dysbiosis in patients with kidney disease

= Gut microbiota, uremic toxins, and systemic
complications in patients with kidney disease

= Double impact of gut microbiome and kidney function
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= The new players in uremic toxins
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For circulating metabolites, which factors
are more important
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Gut microbiota generation of protein-bound uremic toxins and related

metabolites is not altered at different stages of chronic kidney disease

STUDY COHORT SAMPLING AND METHODS RESULTS
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Concentrations (conc.) of p-cresyl sulfate, indoxyl sulfate, and indole-3-
acetic acid-related metabolites in (a,b) feces, (c,d) plasma, and (e,f) urine.

i ‘* -s- "l l‘l

Control CKD 1 CKD 2 CKD 3 CKD 4 CKD §

Plasma

C Indoxyl sulfate -

/’;2”!

+*+*-!-,,+* & B

pcresyl sulfate ‘ ‘
4- -

4-... P % -‘-.‘. 'i‘-.- +
D1 CKD2 CKD3 CKD4 CKDS

o
N

o
-

atio

kk%&k%k@

Control CKD1 CKD2 CKD3 CKD4 CKDS5 HD PD

b B Tryptophan O Indole O Indoxyl sulfate O |

W Mité*ﬁ !é°
FRLFEI AR AR FRUERLE 6

Control CKD1 CKD2 CKD3 CKD4 CKDS5 HD PD

o
o

PEUT/creatinine r;

0.10

Lot

0.00

8
¢
0
0
é
6
o
o
o
—
0
—
0
—
|0

Kidney Int. 2020 Jun;97(6):1230-1242.



Fractional kidney clearance of p-cresyl sulfate (pCS), p-cresyl glucuronide (pCG),

indoxyl sulfate (IxS), and indole-3-acetic acid (IAA) per CKD stage
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Does the metabolite fraction excretion important?
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Predictors of the Plasma and Fecal Metabolomes in
CKD: The CRIC Gut Study

* Chronic Renal Insufficiency Cohort Study (CRIC)

e Study Design: Observational

Conditions: Cardiovascular Diseases, Diabetes Mellitus, Kidney
Diseases, Renal Insufficiency, Chronic
Duration: 2003 — ongoing

# Recruitment Centers: 7 (with total of 13 recruiting sites)

W e CHRONIC RENAL
’[ INSUFFICIENCY

COHORT STUDY
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Feature Group

For fecal metabolomics For blood metabolomics
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Table 2. Serum concentrations and eGFR

eGFR 1/eGFR

R? P R? P

CKD-EPI
equation
Creatinine .61 <().001 .91 <().001

<(.001 (.61 <().001
p-Cresyl <(.001 (.46 <().001
sulfate

Indoxyl <().001 (.46 <().001
sulfate
MDRD
equation
Creatinine 0.63 <(.001 (.92 <().001
<(.001 .61 <().001
p-Cresyl <(.001 0.46 <().001
sultate
Indoxyl <(.001 0.46 <(.001
sulfate

Clin J Am Soc Nephrol. 2013 Sep;8(9):1508-14.



Table 2 Patient classification according to CKD stage and Chronicity Score

CKD-EPI equation (creatinine-based)—p < 0.0001

CKD stage 1 CKD stage 2 CKD stage 3 CKD stage 4-5 Total
Score 0 22 (37%) 25 (29%) 4 (8%) - 51
Score 1 26 (44%) 28 (33%) 11 (22%) - 65
Score 2 7 (12%) 21 (25%) 18 (35%) - 46
Score >3 4 (7%) 11 (13%) 18 (35%) 5 (100%) 38
Total 59 (100%) 85 (100%) 51 (100%) 5 (100%) 200
MDRD equation—p <0.0001 25% ~ 38%

CKD stage 1 CKD stage 2 CKD stage 3 CKD stage 4-5 Total
Score 0 18 (37%) 26 (29%) 7(13%) - 51
Score 1 20 (41%) 32 (36%) 13 (23%) - 65
Score 2 6 (12%) 22 (24%) 18 (32%) - 46

Score >3 5 (10%) 10 (11%) 18 (32%) 5 (100%) 38
Total 49 (100%) 90 (100%) 56 (100%) 5 (100%) 200

J Nephrol. 2021 Jun;34(3):699-707



Estimation of Proximal Tubular Function by JAS N

Stimulation of Organic Anion and Cation Transporters

8 GFR was stable during the study.
Proof of principle study LAJ 9 9 y

Maximal values of TScr and Tsfuro were obtained in the first hour.
Studied hourly

during 4 hours

Journal of the American Society of Nephrology
Clinical Research

* 9 healthy volunteers KDIGO categories of GFR were widely distributed throughout the range

of tubular secretory responses.

1 hour stimulated ' Serum @ Serum
response with OATSs | Indoxyl sulfate ﬂ pCresol sulfate

‘\ 22 patients with CKD

cussteatynarcrz G

EEERaS in KDIGO stages

g» Indoxyl sulfate,
pCresol sulfate, and

ﬂ urinary biomarkers
of tubular function

‘ + HEI— 2nd-3rd & 3rd-4'" hour

5g Creatine IV Furosemide

negatively correlated with: r=-0.54, P =0.009 r=-0.46, P=0.03

Urinary epidermal growth factor, ammonium, alpha 1 macroglobulin,

and uromodulin correlated with the increment of TScr and TSfuro.

R Urinary excretion rate of
GFR determination creatinine in the 1%t hour after *\ TScr

(ilohexol urinary ingestion of 5g of creatinine r=0.87, P <0.001
To stimulate OCTs and OATs Searance) EECDgcorelatat Wity

IV: Intravenous, OCT: Organic cation transporter, OAT: Organic anion transporter, TScr: Tubular secretion of creatinine, Tsfuro: Tubular secretion for furosemide

c on'GIusi ons: The functions of OATs and OCTs of the proxim‘a"l'tubule-‘varfi'ed cbnéiderabiy Magdalerja M?dero. Ana P-(aren Fernéndez-ngez, Aldq Arturq Reséndiz-AIpor.
between patiénfs with similar GFRs and their impaired r‘e"spoh‘sé" was associated with ' et al. Estimation of Proximal Tubular Function by Stimulation of Organic

retention of protein-bound uremic solutes and urine biomarkers of tubular dysfunction. Anion and Catto.n Transpo::ters. JAS.N doi: 10.1681/ASN.0000000686. Visual
Abstract by Maria Ana Louise M. Naidas, MD
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US and European cohorts (n=4,833)
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US and European cohorts (n=4,833)
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@ Unadjusted (filled)

=0+ Adjusted (open)  MACE (3-year follow up)

Phenylalanine derived compounds

Phenylalanine

» phenylacetyl glutamine PAGIn
» phenylacetyl glycine PAGIy
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Kaplan—Meier survival curve of overall survival (A) and competing death risk of major adverse cardiovascular events (composite
endpoint of acute heart failure hospitalization, acute coronary syndrome, or cerebrovascular disease) (B), acute heart failure
hospitalization (C), and acute coronary syndrome (D) stratified by the tertiles of serum phenylacetylglutamine (PAG)
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nature communications Phenyl sulfate
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Article | Open access | Published: 23 April 2019 Prof. Takaaki Abe

Gut microbiome-derived phenyl sulfate contributes to
albuminuria in diabetic kidney disease

[] Save Q_ Related Papers £3 Chat with paper
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Diabetic patient cohort (U-CARE, n=362)
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SWEDISH CARDIOPULMONARY BIOIMAGE STUDY P h e ny I S u I fa te
som ska férhindra hjdrt-lungsjukdom

752 Type 2 DM from Swedish Cardiopulmonary Bioimage Study (SCAPIS) (_@
Stool Shotgun metagenomics (Clinical Microbiomics, Copenhagen)
Blood Global metabolomics (Metabolon Inc., USA)

A=

Microbiome Metabolites Albuminuria

Clostridium sp. AT4 e P Phenol sulfate (Tyrosine Metabolism)
Eggerthella lenta

p=0.011

phenol sulfate

0=

Emily Yi-Ting Lin
Associated Professor, KMUH

J Clin Endocrinol Metab. 2025 Aug 14:dgaf453



KMUH 675 DM patients to analysis the PS and clinical outcomes ...
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Take home message
CKD patients present gut dysbiosis

Gut microbiota contribute to protein-bound uremic toxins,
triggering systemic complications

Both microbiome and kidney function are important for blood
uremic toxins

Novel uremic toxin, phenylacetylglutamine (PAG), is related to poor
CV outcomes in CKD patients

Novel uremic toxin, phenyl sulfate (PS), is related to death and
cardiorenal outcomes in DM patients
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