

The Rapidly Evolving Treatment Paradigm

For IgA Nephropathy

Professor Jonathan Barratt

University of Leicester

&

John Walls Renal Unit, Leicester

Speaker Declarations

Jonathan Barratt

Consulting and Speaker Fees

Alnylam, Argenx, Astellas, BioCryst, Calliditas, Chinook, Dimerix, Galapagos, Novartis, Omeros, Travere Therapeutics, Vera Therapeutics, Visterra

Grant Support

Argenx, Calliditas, Chinook, Galapagos, GlaxoSmithKline, Novartis, Omeros, Travere Therapeutics, Visterra

Clinical trials

ADU-CL-19 & ALIGN (Chinook), APPLAUSE (Novartis), ARTEMIS-IGAN (Omeros), ENVISION (Visterra), NeflgARD (Calliditas), ORIGIN (Vera Therapeutics)

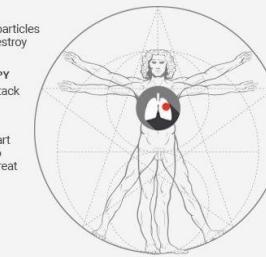
Research projects

Argenx, Calliditas, Chinook, Galapagos, GlaxoSmithKline, Novartis, Omeros, Travere Therapeutics, Visterra

TRADITIONAL MEDICINE vs. PRECISION MEDICINE

Traditionally, radiation, chemotherapy, and surgery were the only means by which doctors could treat cancer. With precision medicine, doctors use a patient's genes to uncover clues for treating the disease.

RADIATION


- High-energy particles damage or destroy cancer cells

CHEMOTHERAPY

- Chemicals attack cancer

SURGERY

- Operate on part of the body to diagnose or treat cancer

Advanced
Personalized
Treatment

GENETICS

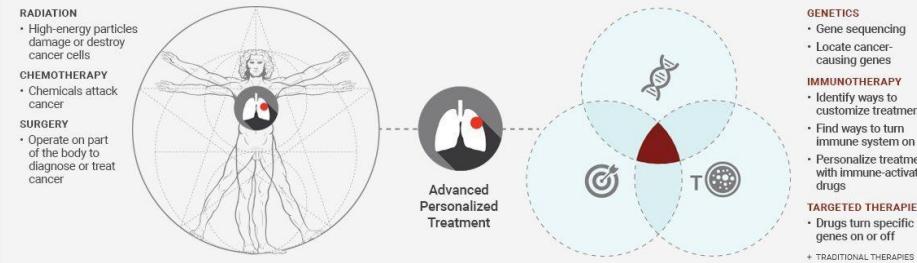
- Gene sequencing
- Locate cancer-causing genes

IMMUNOTHERAPY

- Identify ways to customize treatment
- Find ways to turn immune system on
- Personalize treatment with immune-activating drugs

TARGETED THERAPIES

- Drugs turn specific genes on or off

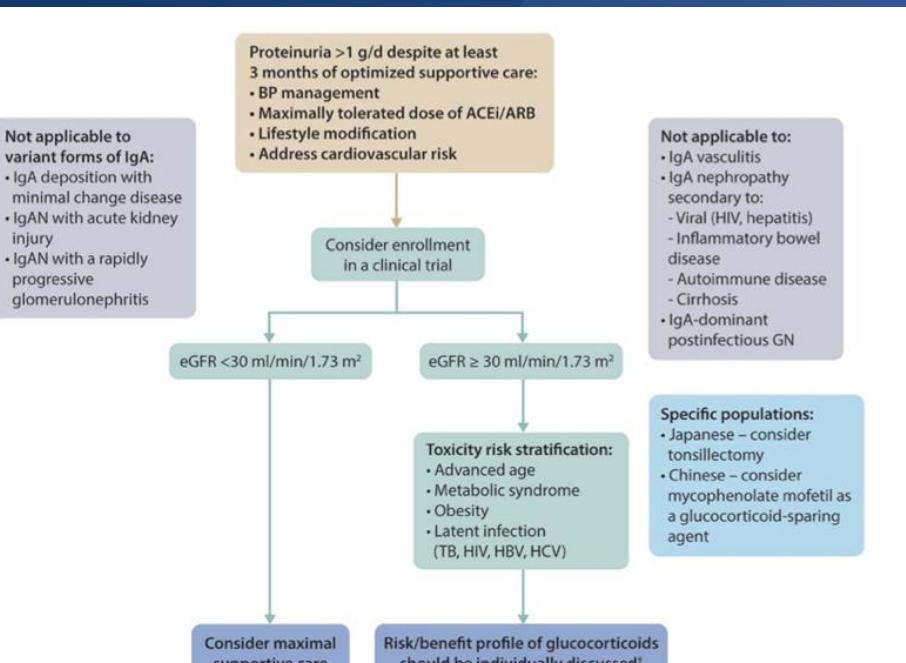
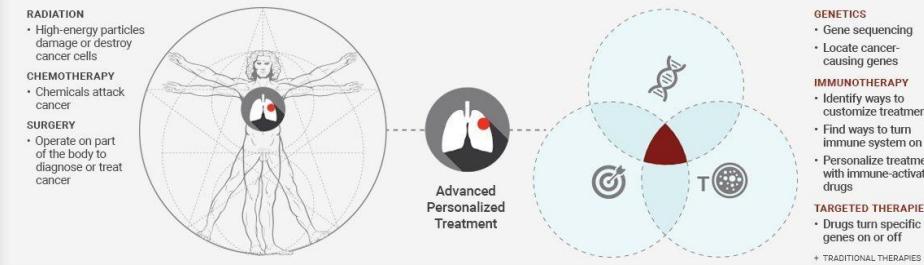

+ TRADITIONAL THERAPIES

TRADITIONAL MEDICINE vs. PRECISION MEDICINE

Traditionally, radiation, chemotherapy, and surgery were the only means by which doctors could treat cancer.
With precision medicine, doctors use a patient's genes to uncover clues for treating the disease.

KDIGO 2021 CLINICAL PRACTICE GUIDELINE FOR THE
MANAGEMENT OF GLOMERULAR DISEASE

PLEASE NOTE: This guideline is being updated on a chapter-by-chapter basis. This guideline contains outdated chapters for ANCA-Associated Vasculitis (Chapter 9) and Lupus Nephritis (Chapter 10). Please see the KDIGO website for the 2024 updates to these chapters.



Kidney International (2021) 100, S1-S276

S1

TRADITIONAL MEDICINE vs. PRECISION MEDICINE

Traditionally, radiation, chemotherapy, and surgery were the only means by which doctors could treat cancer.
With precision medicine, doctors use a patient's genes to uncover clues for treating the disease.

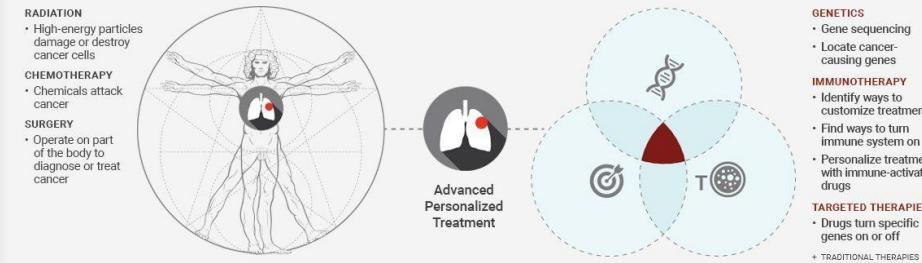


Figure 24 | Management of patients with IgAN who remain at high risk for progression after maximal supportive care. ¹IgAN with rapidly progressive glomerulonephritis is covered in Practice Point 2.4.3. ²The TESTING study¹⁰⁹ shows early evidence of efficacy in patients who had marked proteinuria (2.4 g/d average) at the expense of treatment-associated morbidity and mortality. ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; BP, blood pressure; eGFR, estimated glomerular filtration rate; GN, glomerulonephritis; HIV, human immunodeficiency virus; IgAN, immunoglobulin A nephropathy; TB, tuberculosis.

TRADITIONAL MEDICINE vs. PRECISION MEDICINE

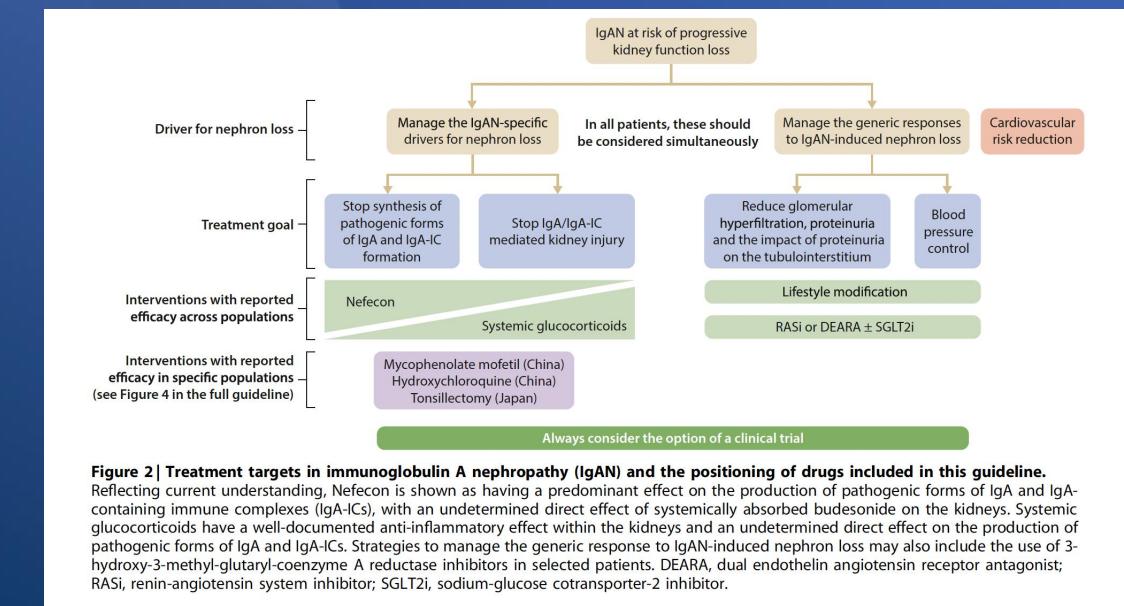
Traditionally, radiation, chemotherapy, and surgery were the only means by which doctors could treat cancer.
With precision medicine, doctors use a patient's genes to uncover clues for treating the disease.

ARTICLE IN PRESS

OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF NEPHROLOGY

SUPPLEMENT TO

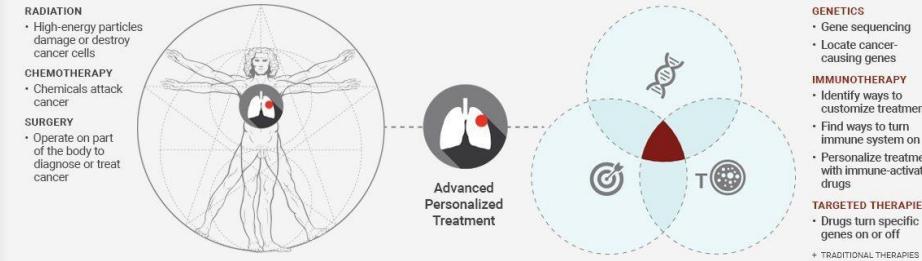
kidney[®]
INTERNATIONAL



KDIGO 2025 Clinical Practice Guideline for the Management of Immunoglobulin A Nephropathy (IgAN) and Immunoglobulin A Vasculitis (IgAV)

VOLUME 108 | ISSUE 5S | NOVEMBER 2025
www.kidneyinternational.org

TRADITIONAL MEDICINE vs. PRECISION MEDICINE


Traditionally, radiation, chemotherapy, and surgery were the only means by which doctors could treat cancer.
With precision medicine, doctors use a patient's genes to uncover clues for treating the disease.

TRADITIONAL MEDICINE vs. PRECISION MEDICINE

Traditionally, radiation, chemotherapy, and surgery were the only means by which doctors could treat cancer. With precision medicine, doctors use a patient's genes to uncover clues for treating the disease.

The image shows two journal covers side-by-side. The left cover is for 'Kidney International' (Supplement to Volume 100, Issue 55, November 2023) featuring the KDIGO logo and the title 'KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Disease'. The right cover is for 'Kidney International' (Volume 108, Issue 55, November 2025) featuring the ISN logo and the title 'KDIGO 2025 Clinical Practice Guideline for the Management of Immunoglobulin A Nephropathy (IgAN) and Immunoglobulin A Vasculitis (IgAV)'. A green snail with a red outline is positioned in the center, crawling from the left cover towards the right cover.

ARTICLE IN PRESS

OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF NEPHROLOGY

ISN
INTERNATIONAL SOCIETY
OF NEPHROLOGY

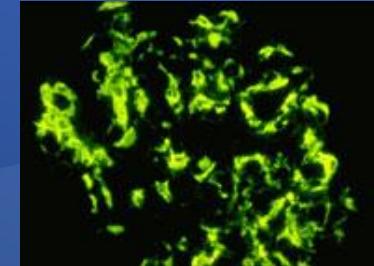
SUPPLEMENT TO

kidney
INTERNATIONAL

KIDNEY DISEASE
IMPROVING GLOBAL OUTCOMES

KDIGO 2021 CLINICAL PRACTICE GUIDELINE FOR THE
MANAGEMENT OF GLOMERULAR DISEASE

PLEASE NOTE: This guideline is being updated on a chapter-by-chapter basis. This guideline contains outdated chapters for ANCA-Associated Vasculitis (Chapter 9) and Lupus Nephritis (Chapter 10). Please see the KDIGO website for the 2024 updates to these chapters.


VOLUME 108 | ISSUE 55 | NOVEMBER 2025
www.kidneyinternational.org

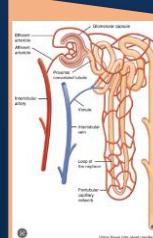
Kidney International (2021) 100, S1-S276

S1

Kidney International (2025) 108 (Suppl 55), ■ ■ ■

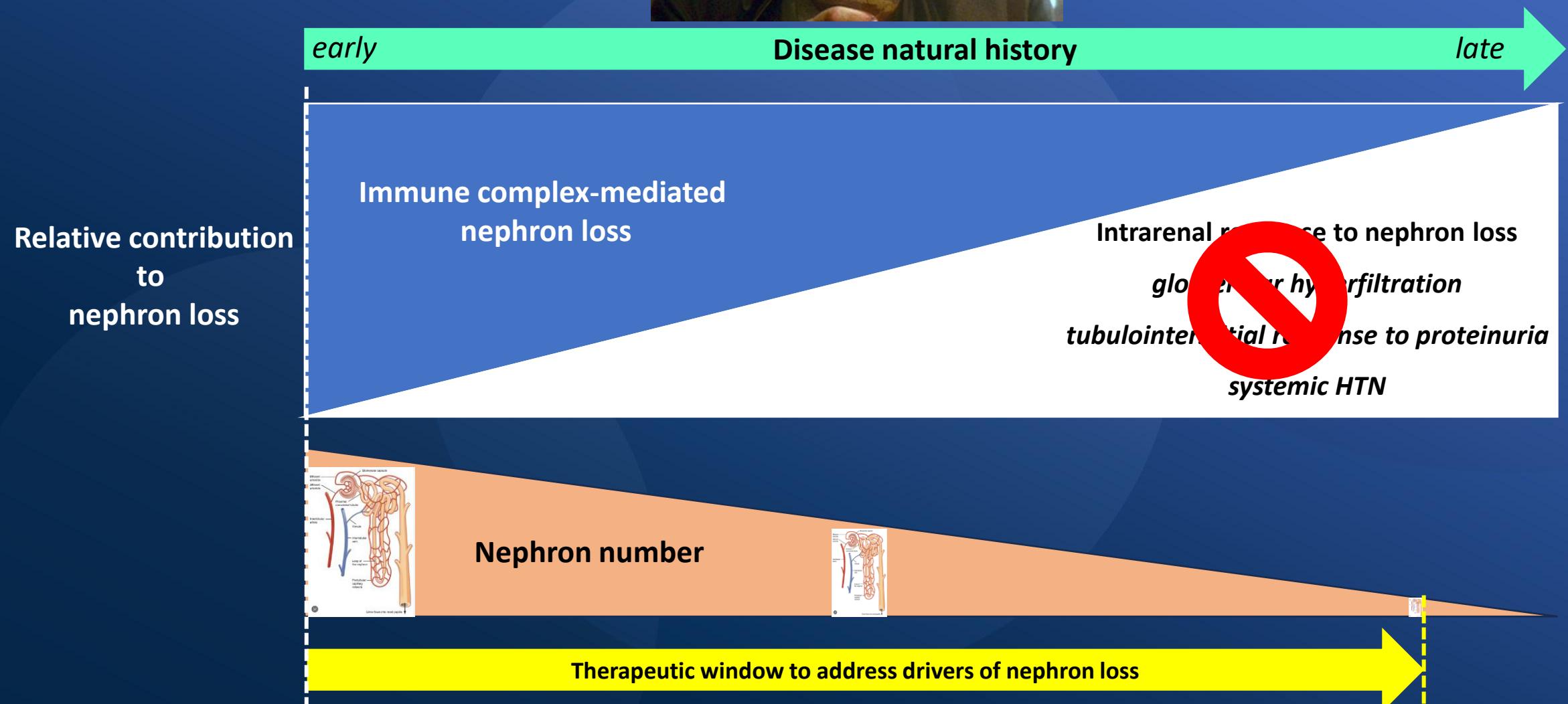
S1

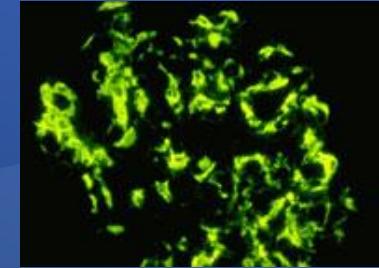
early


Disease natural history

late

Immune complex-mediated nephron loss


Intrarenal response to nephron loss
glomerular hyperfiltration
Tubulointerstitial response to proteinuria
systemic HTN


Relative contribution to nephron loss

Nephron number

early

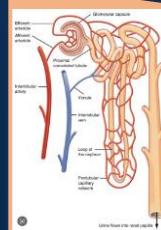
Disease natural history

late

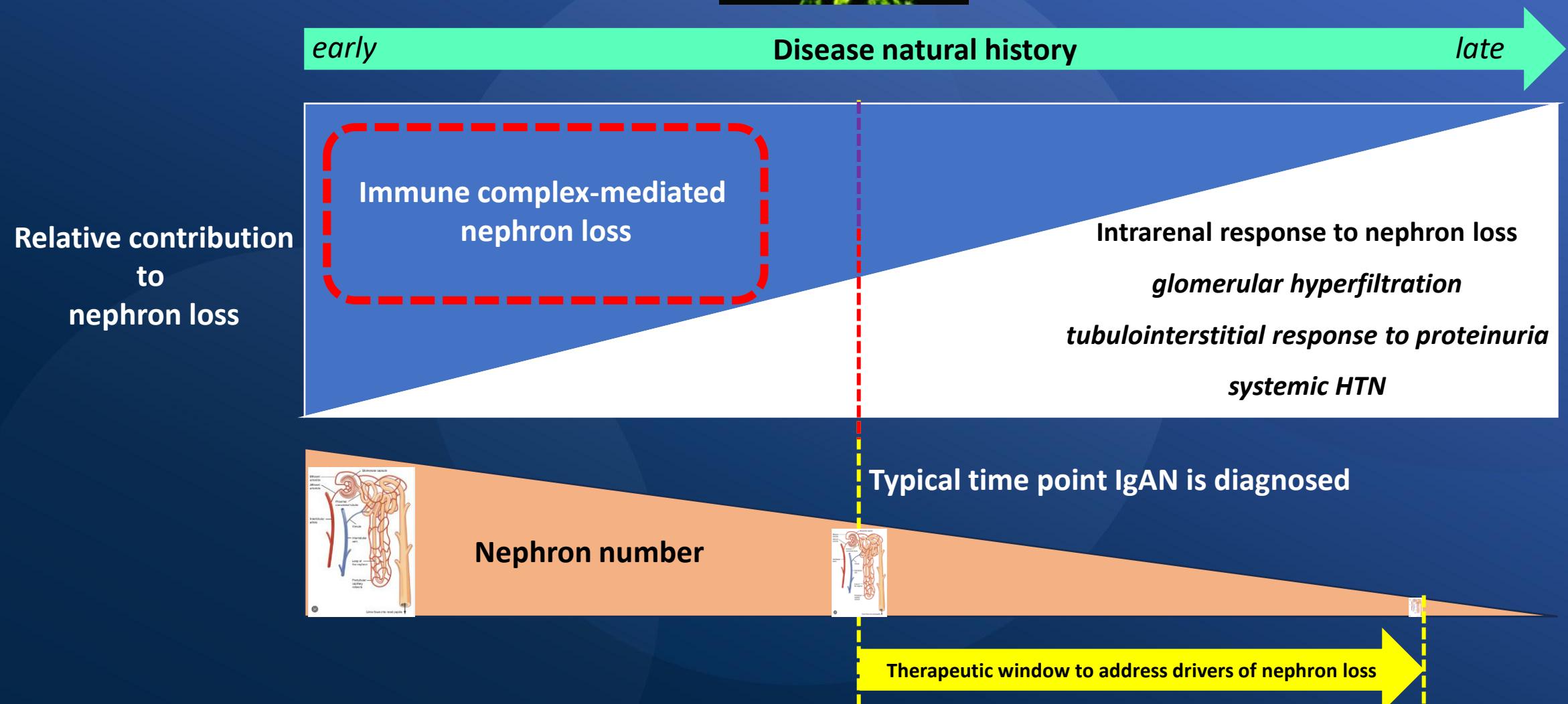
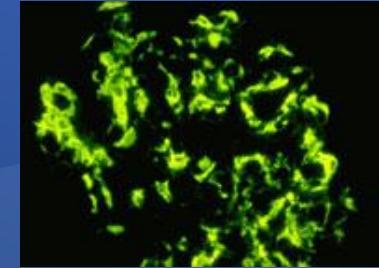
Immune complex-mediated nephron loss

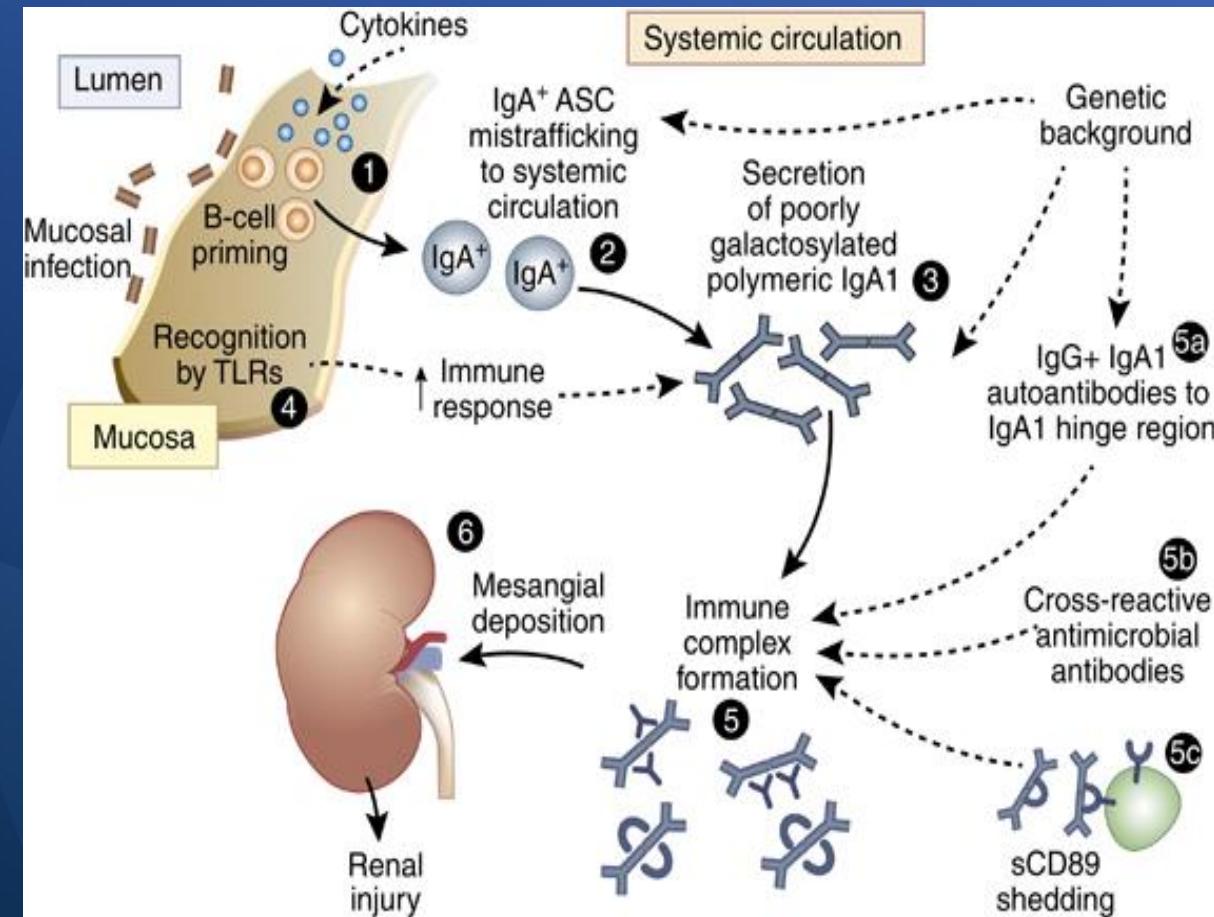
Intrarenal response to nephron loss

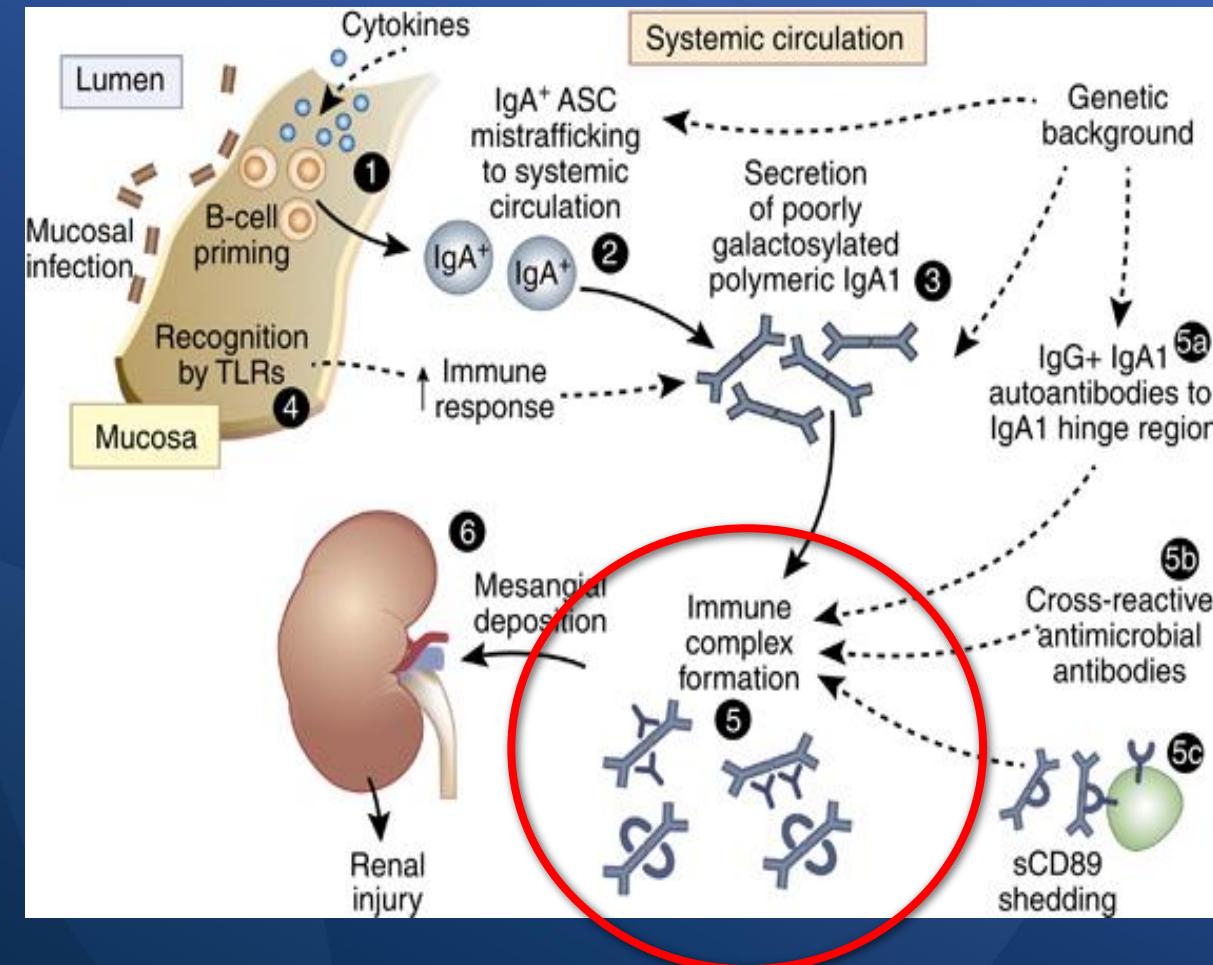
glomerular hyperfiltration

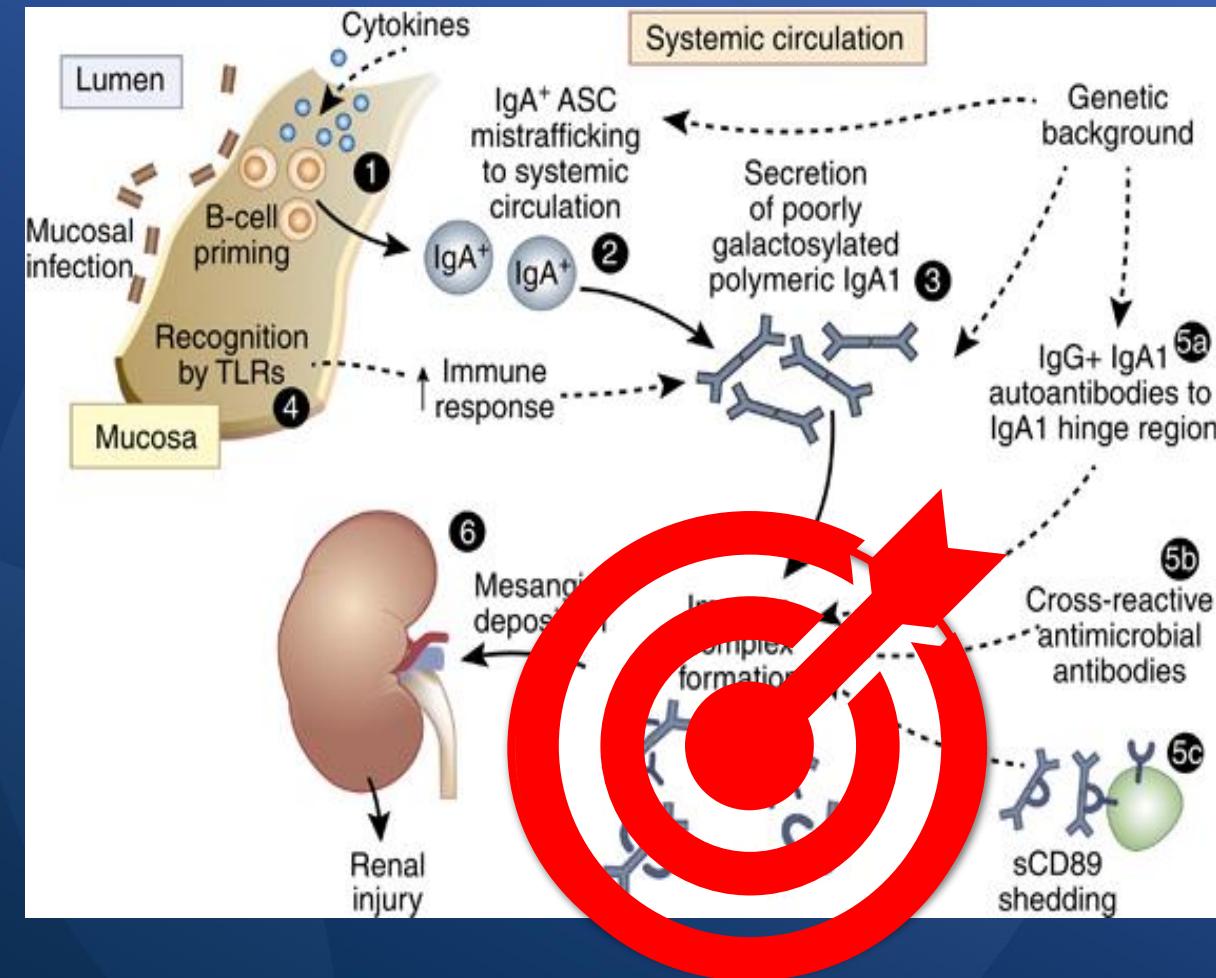

ubulointerstitial response to proteinuria

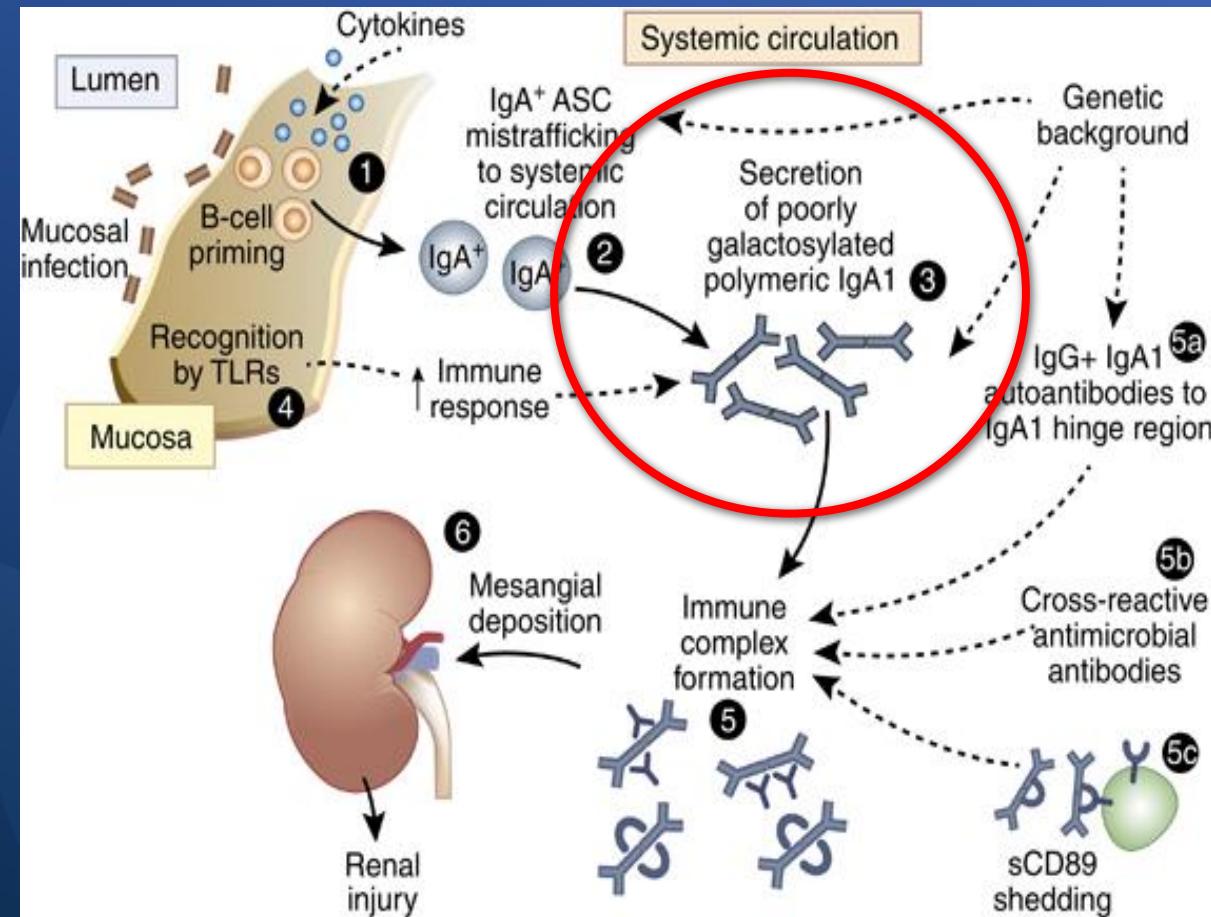
systemic HTN

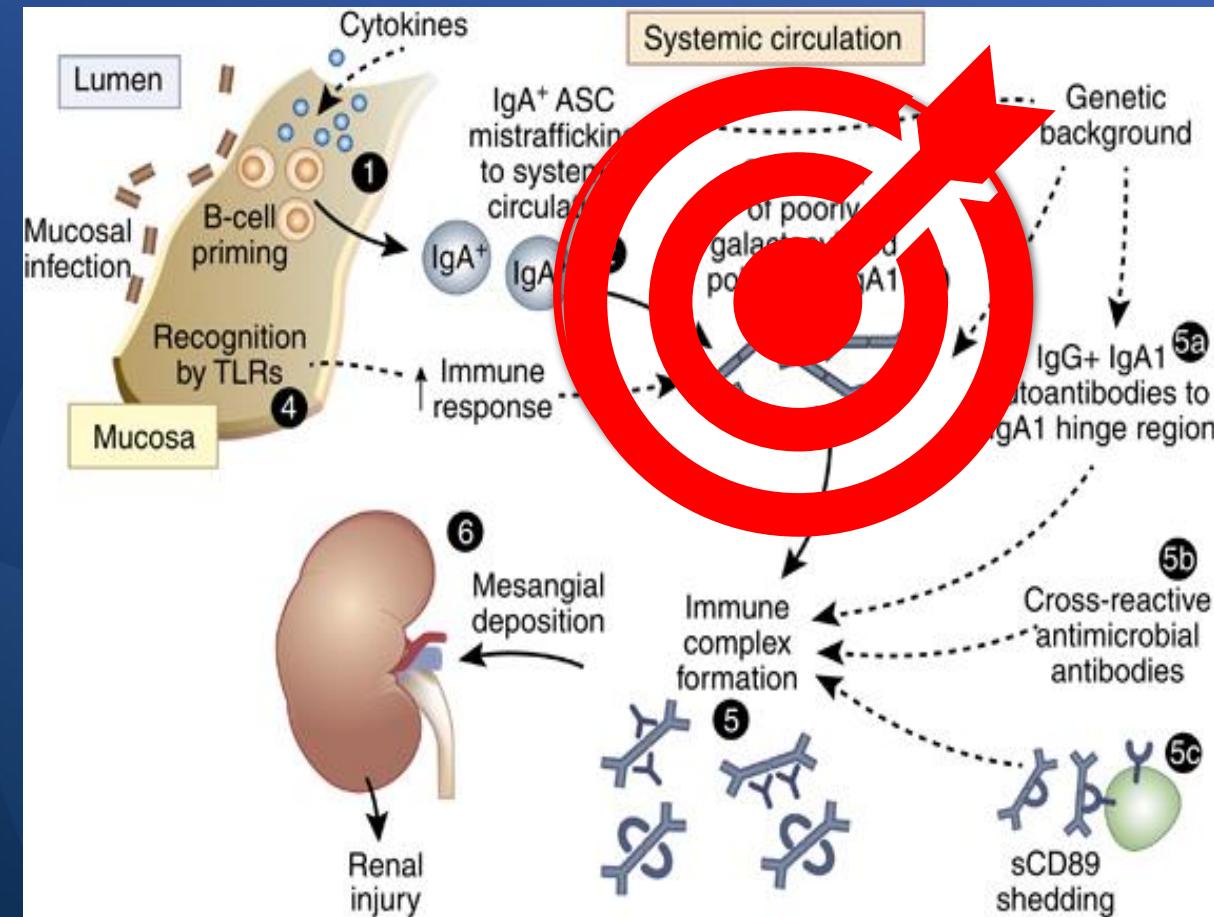


Relative contribution to nephron loss

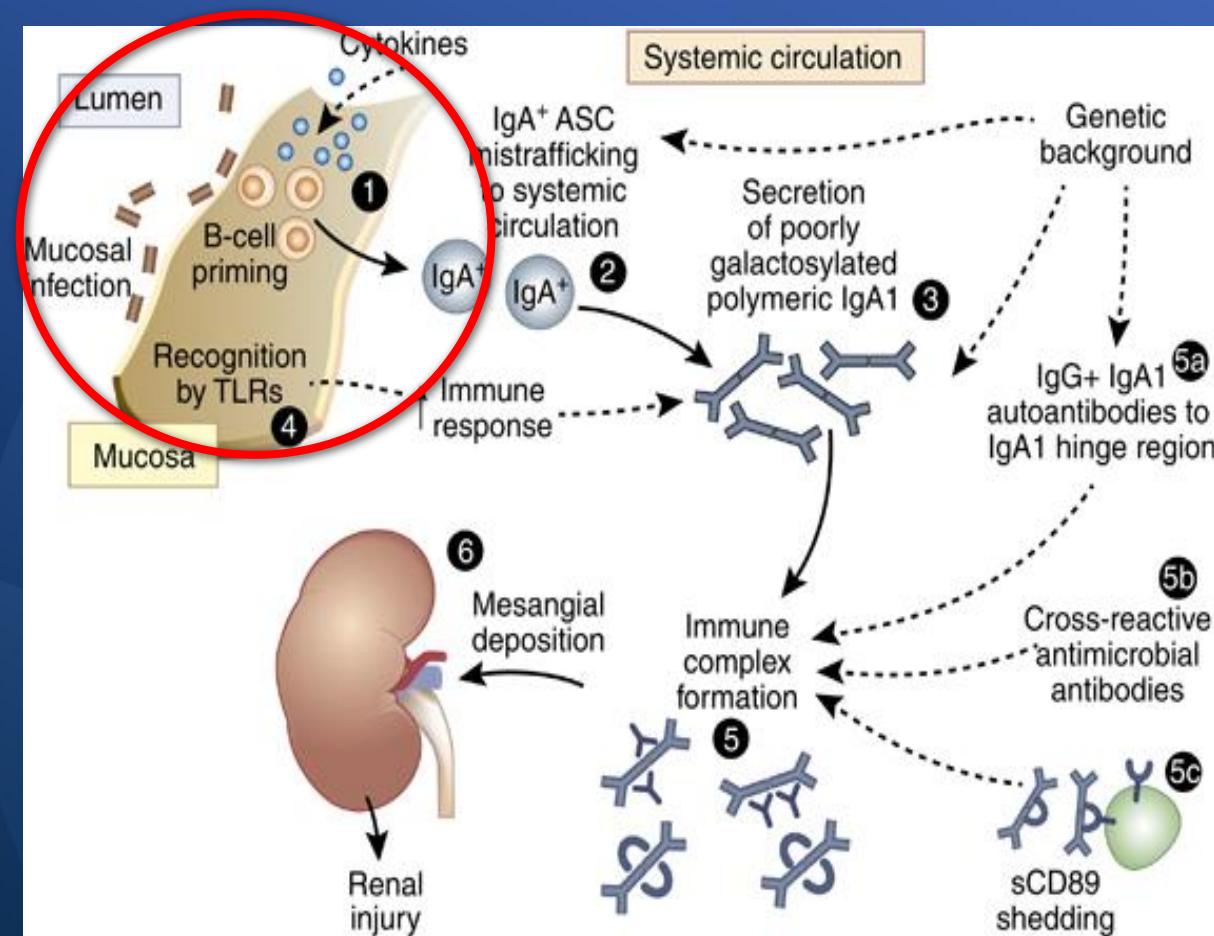

| Typical time point IgAN is diagnosed

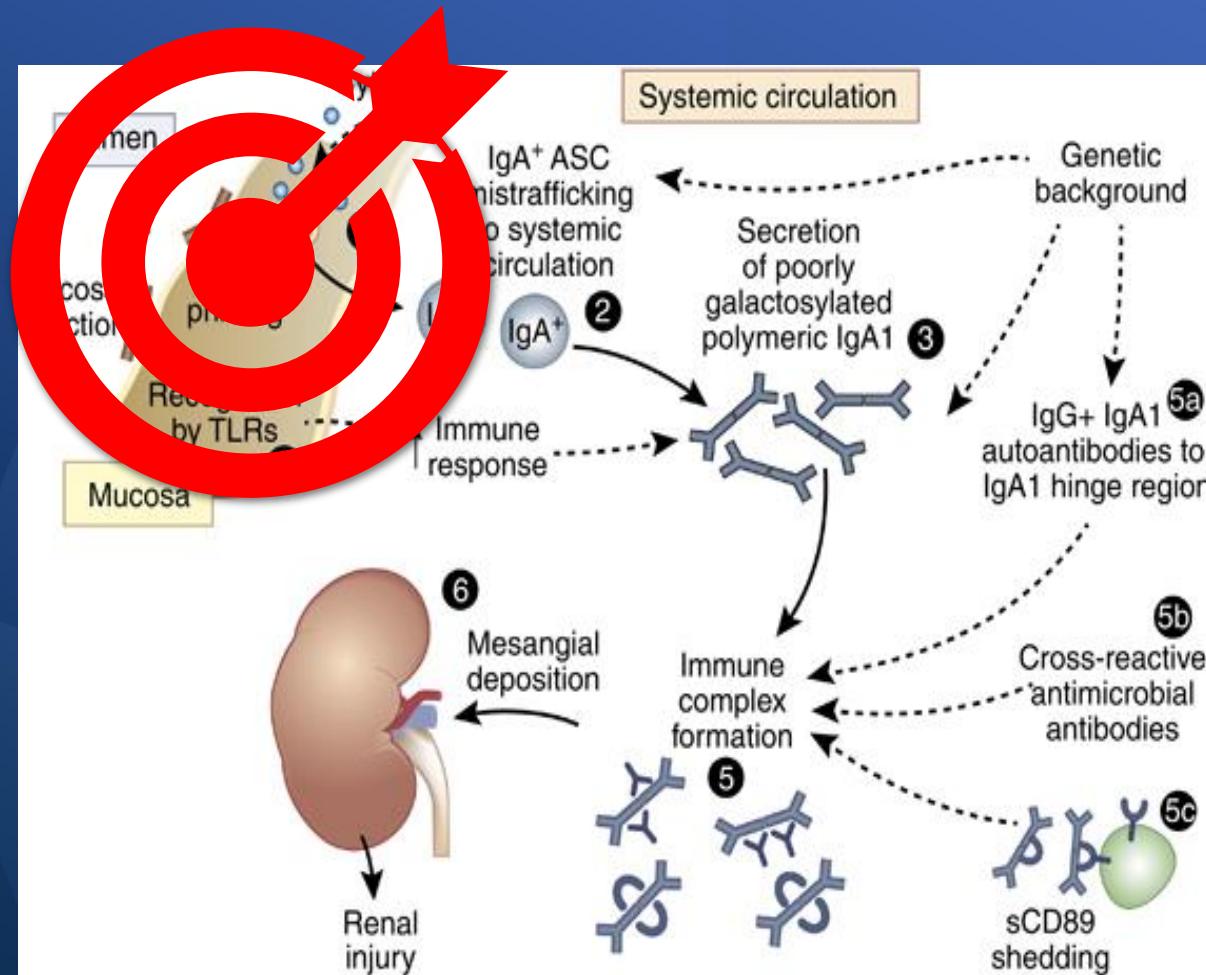

Nephron number

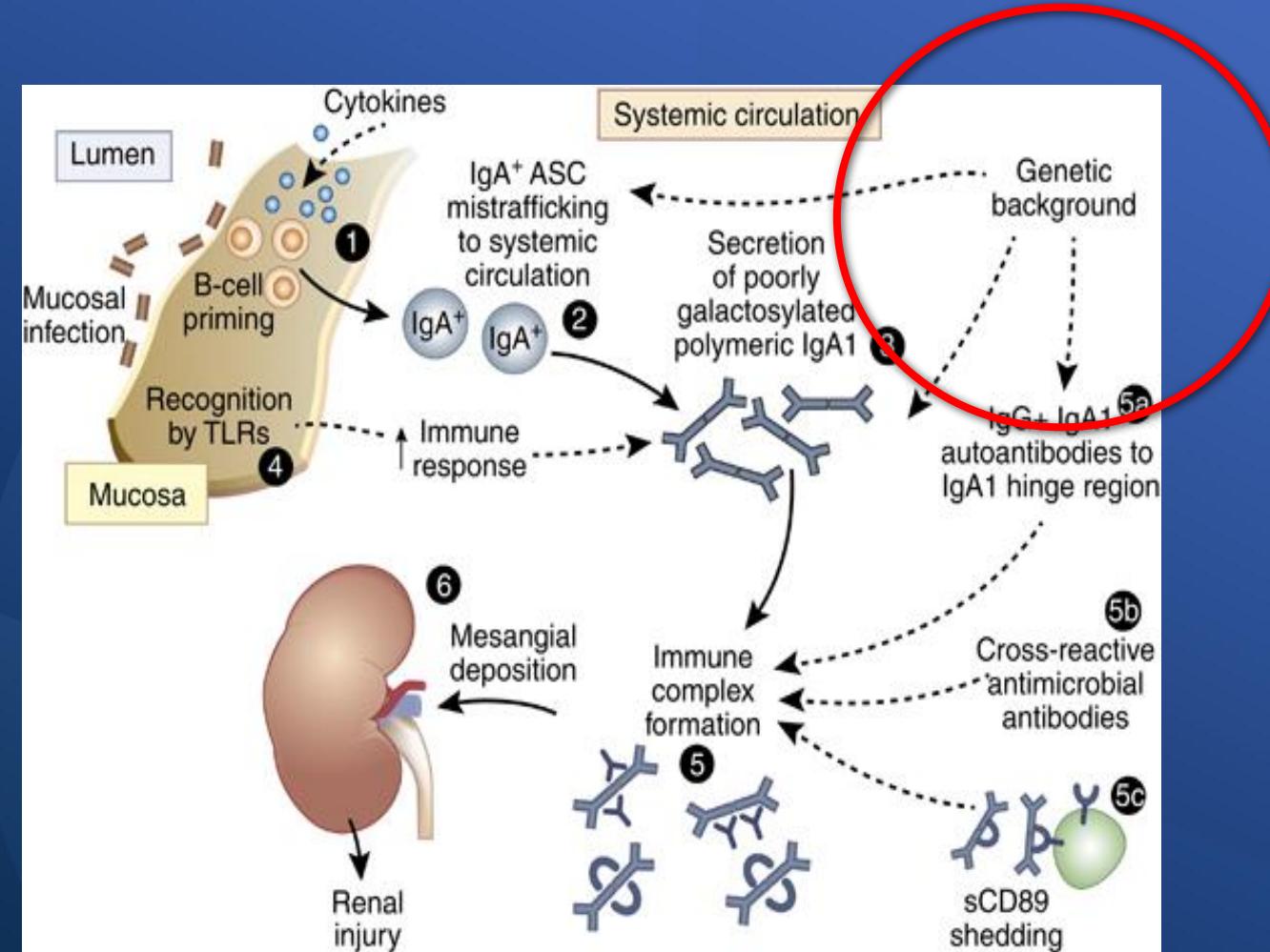


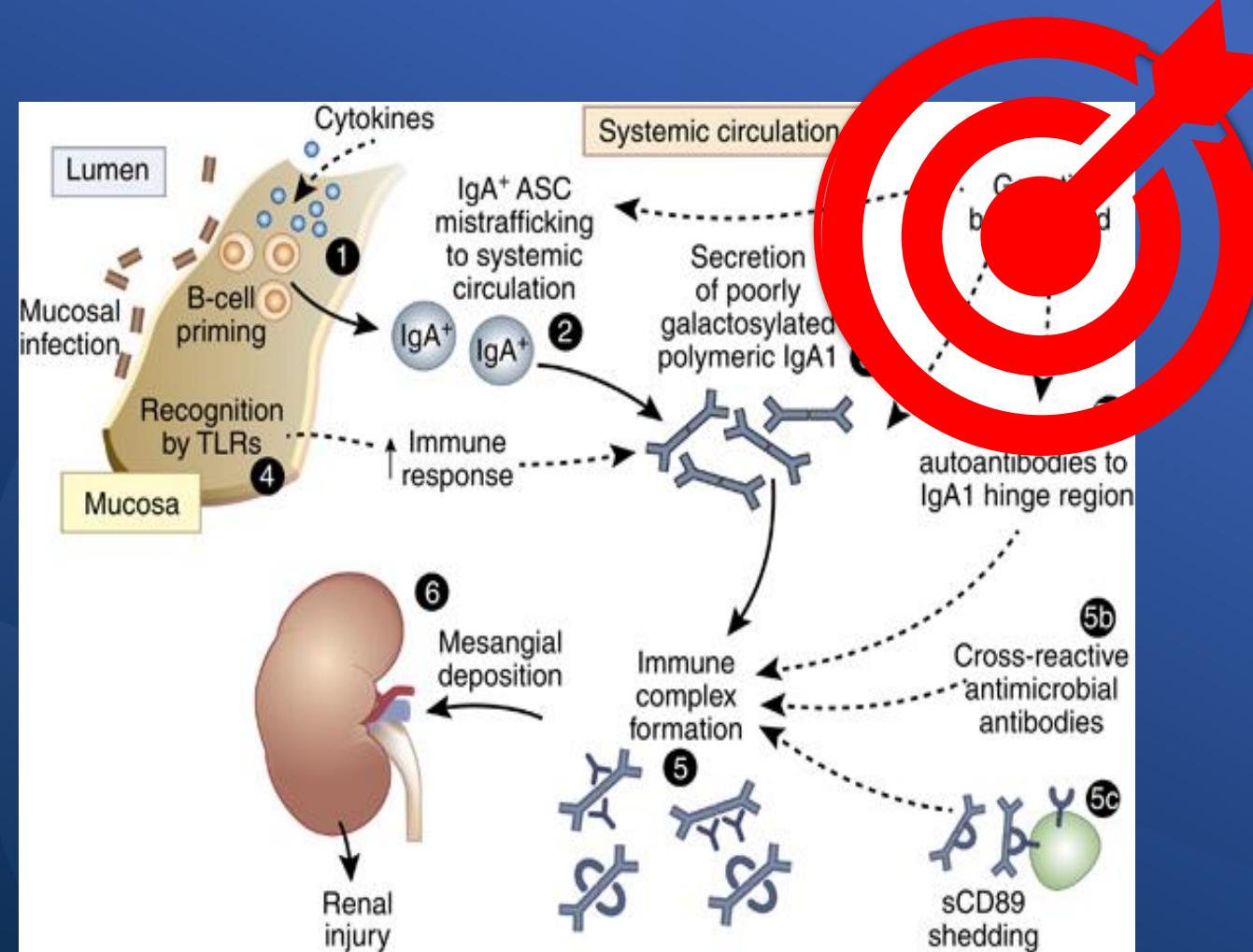

Therapeutic window to address drivers of nephron loss

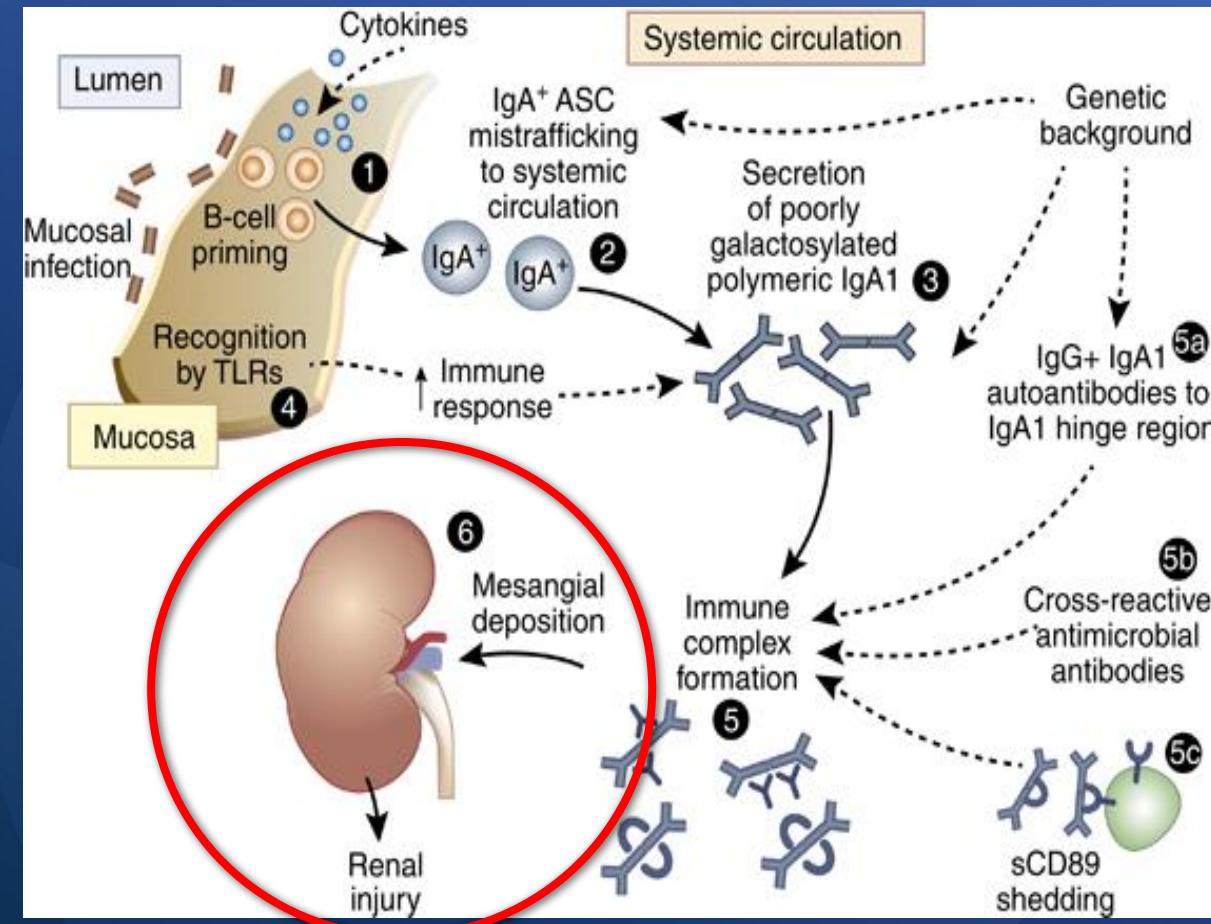


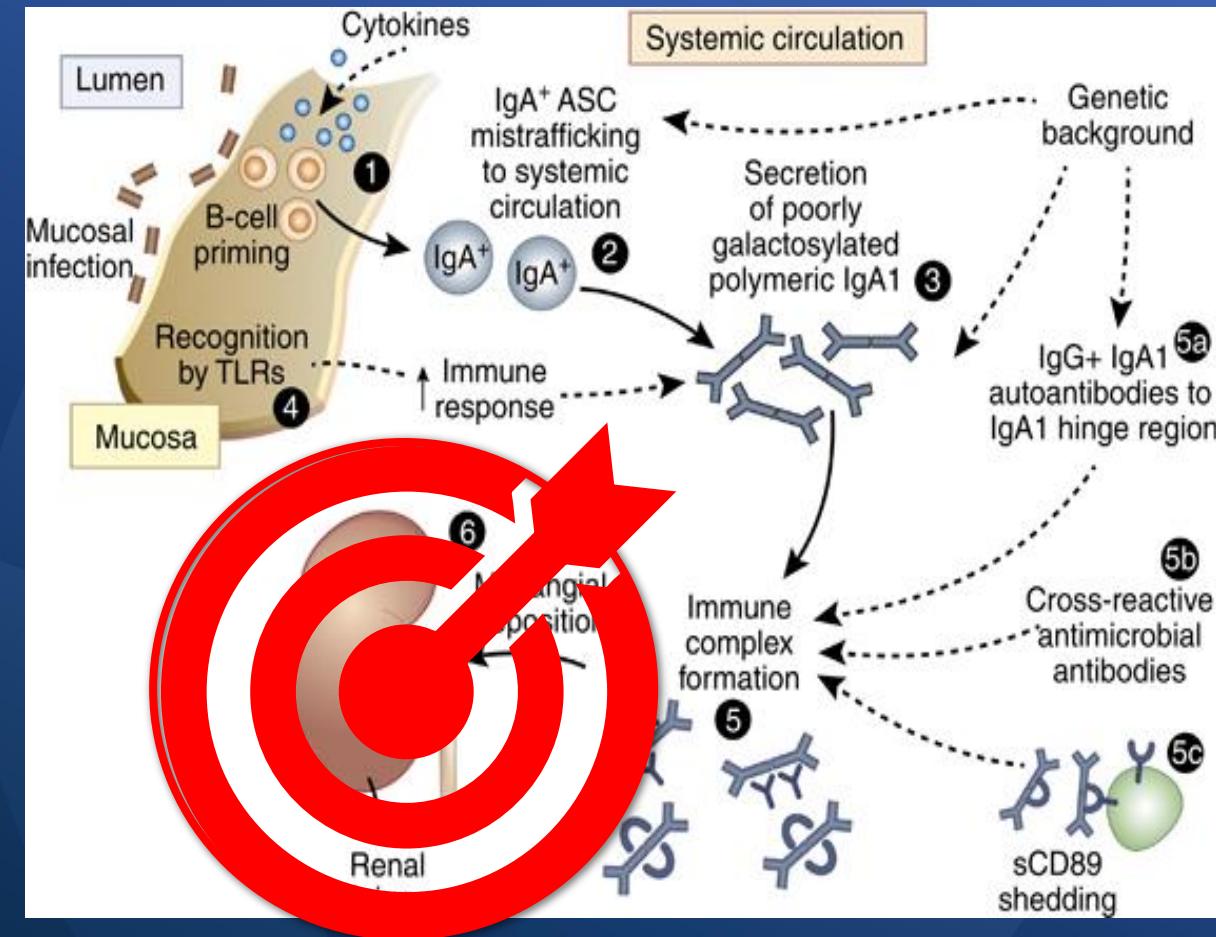


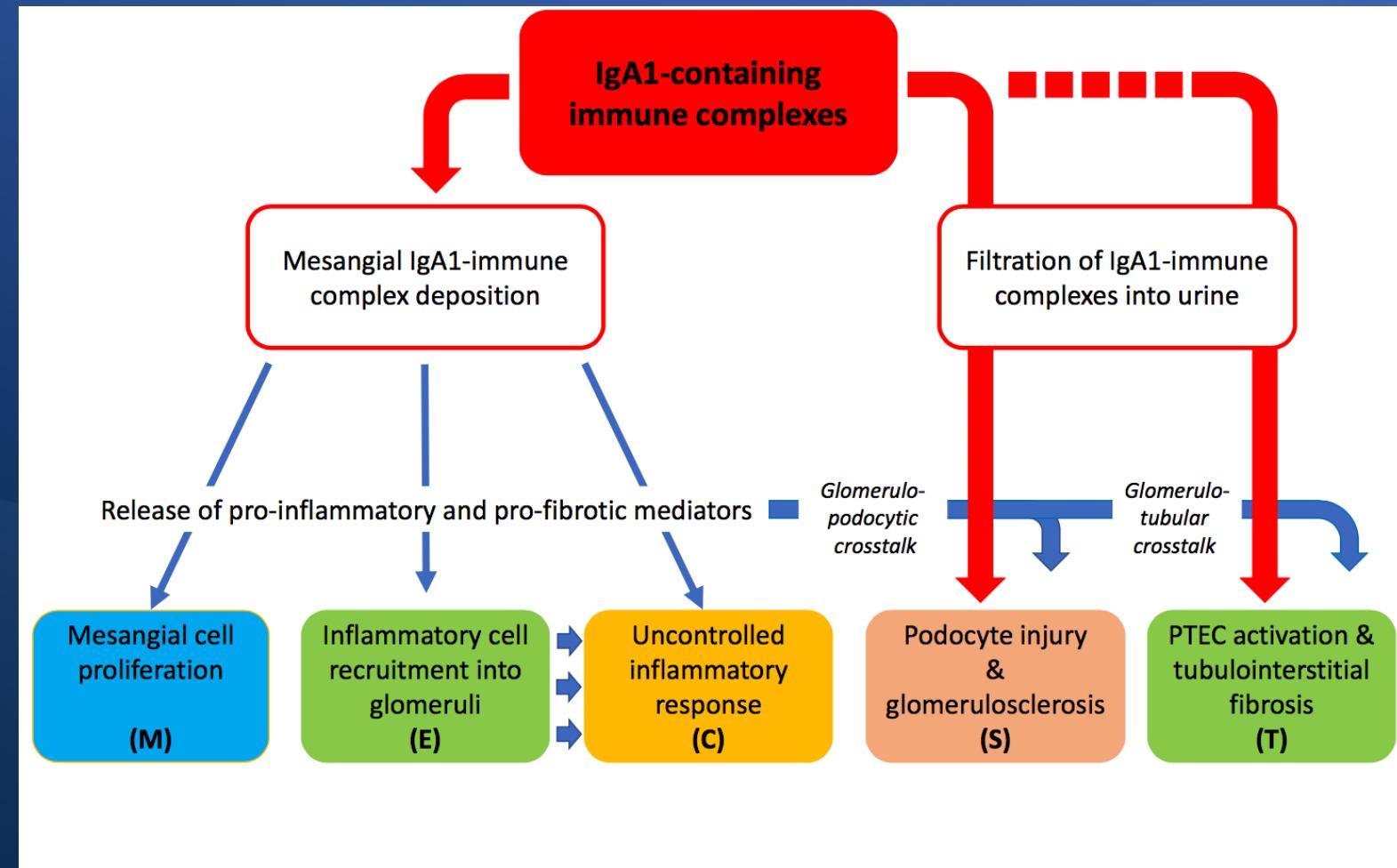


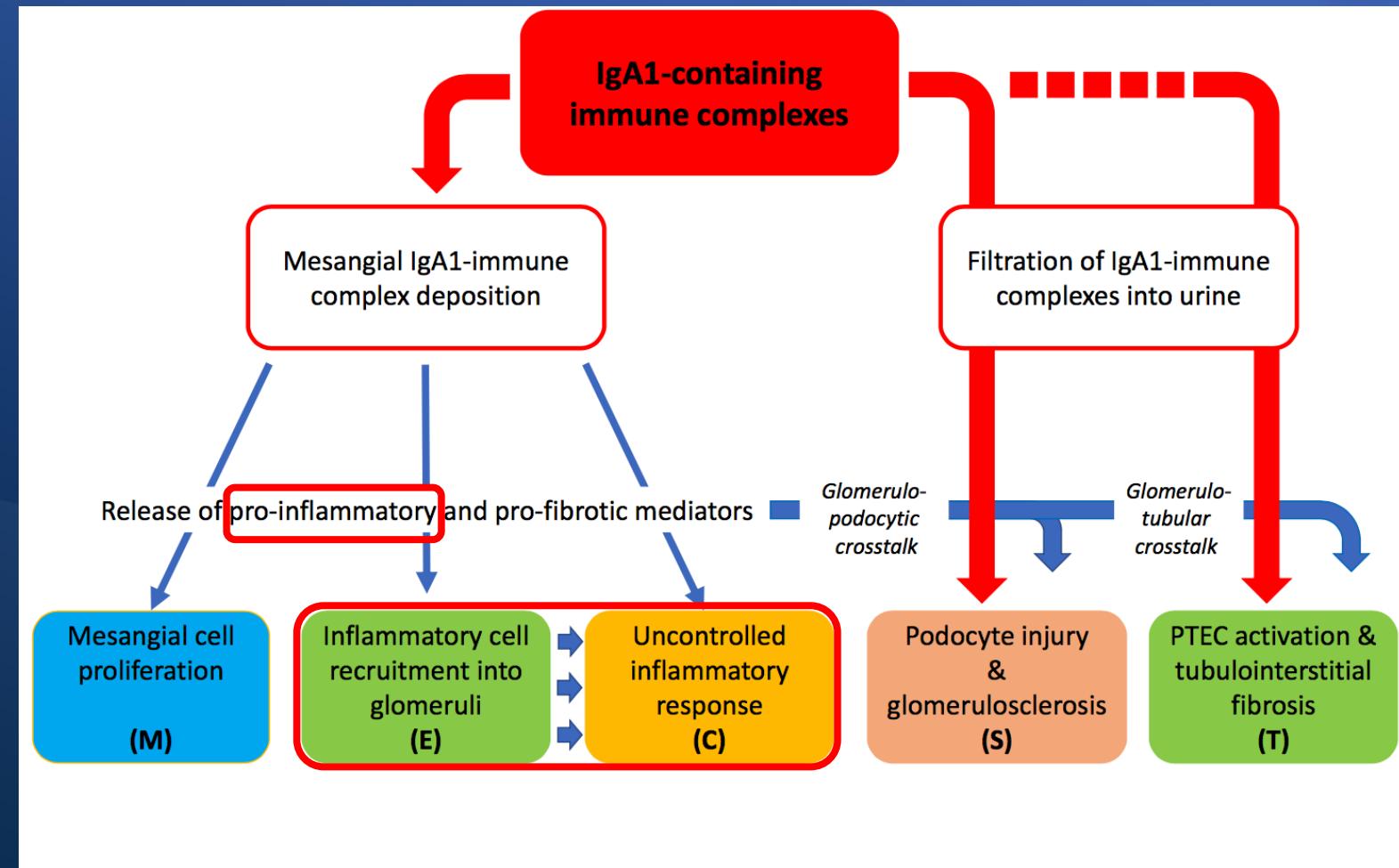


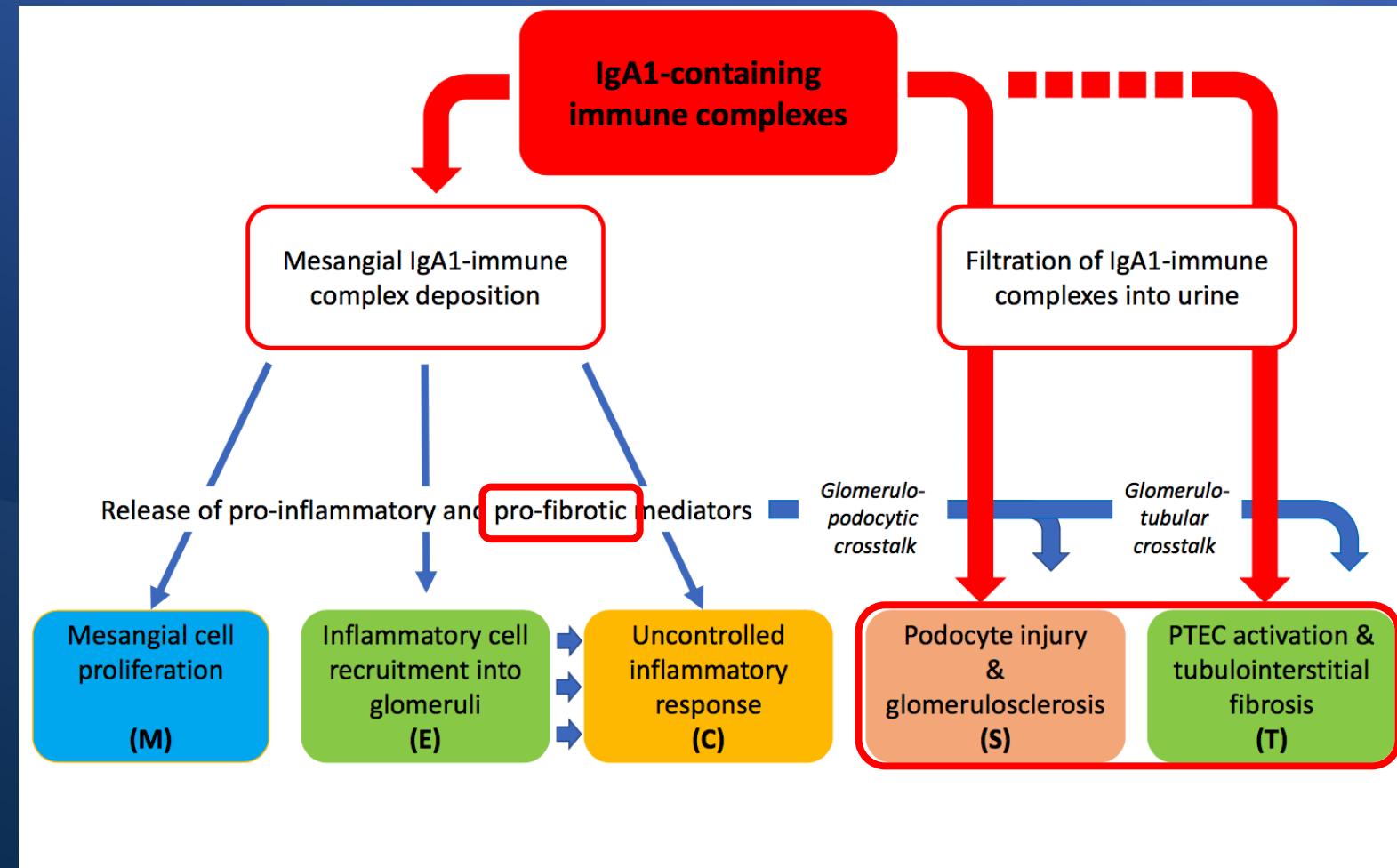


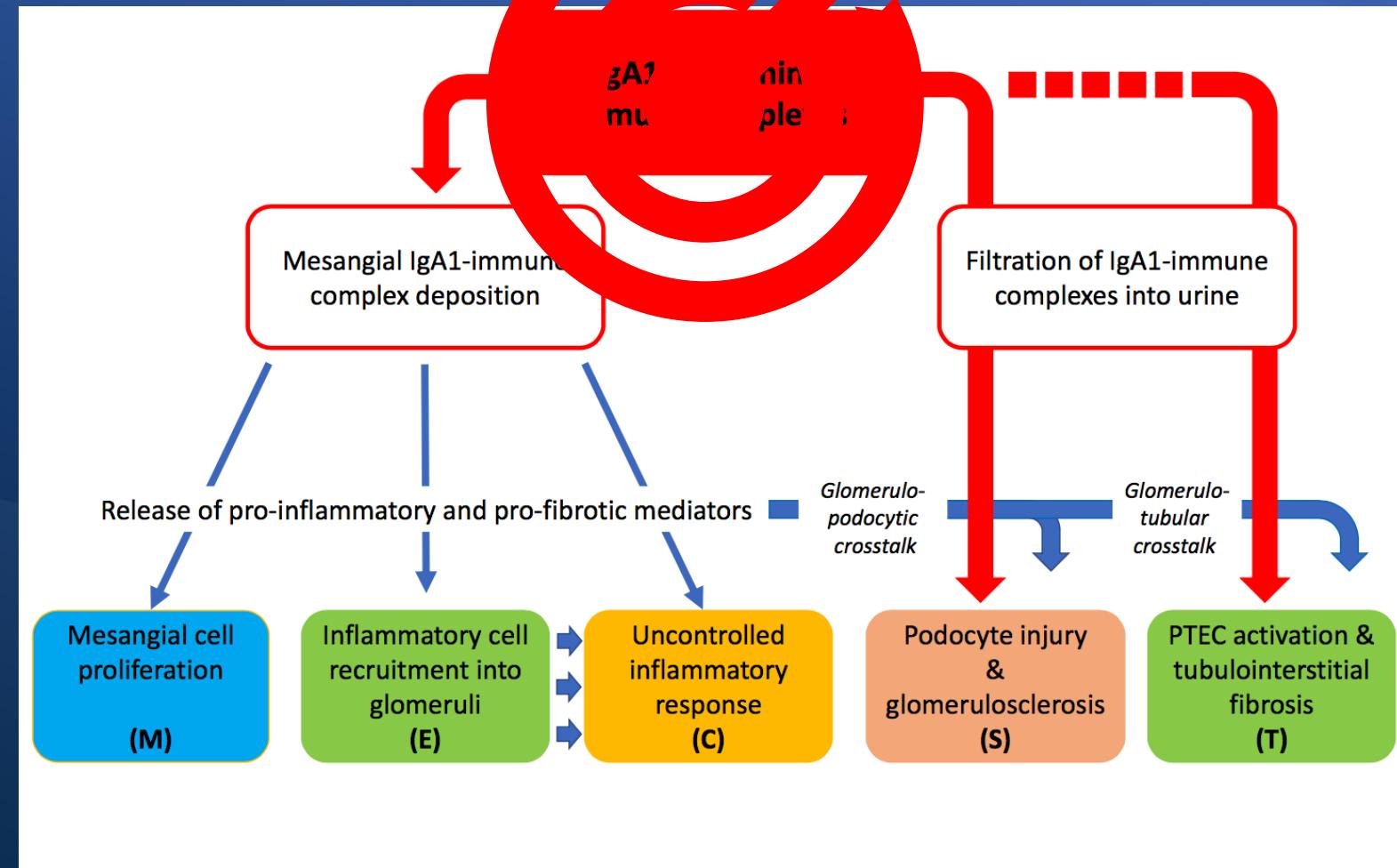


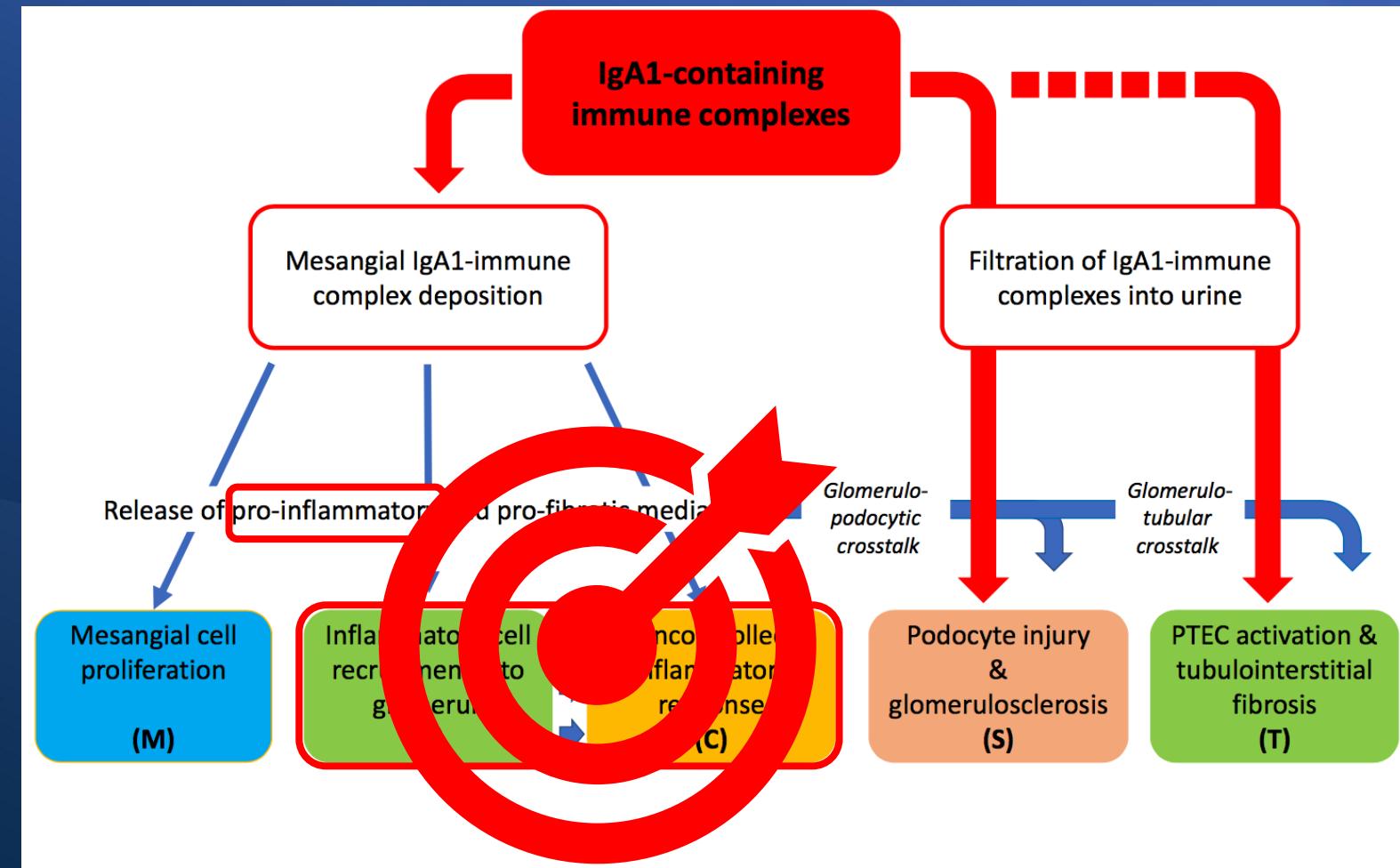


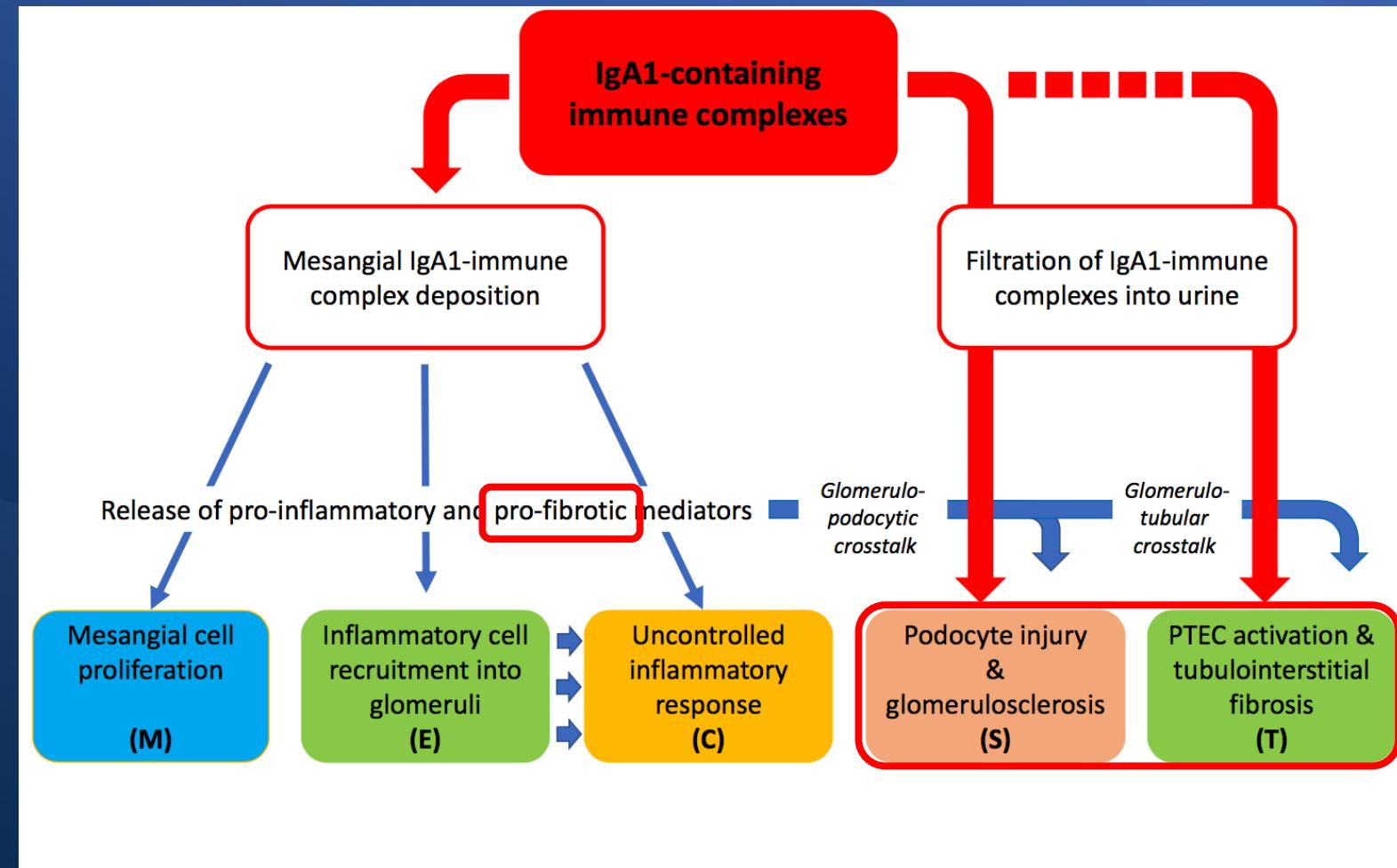


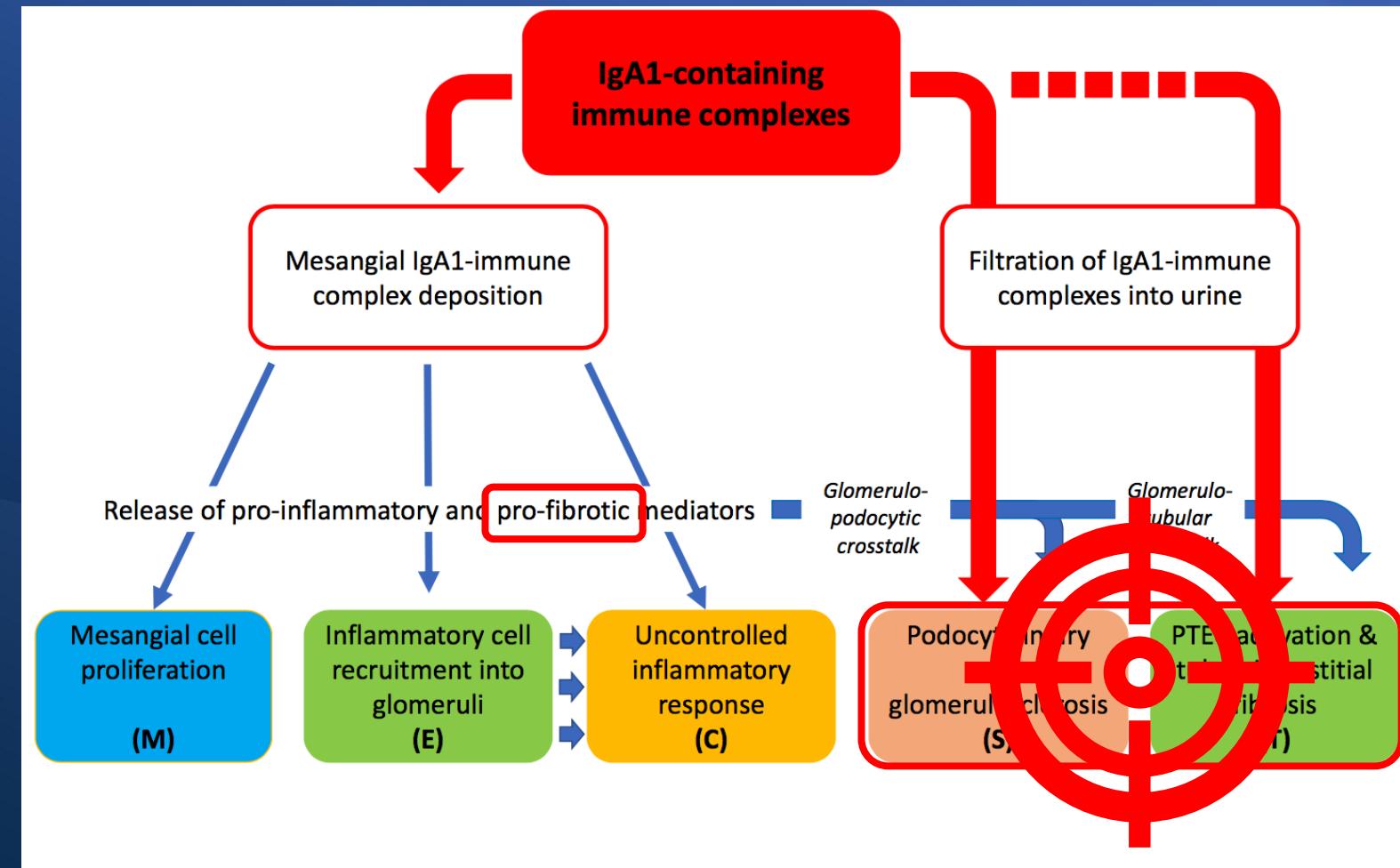


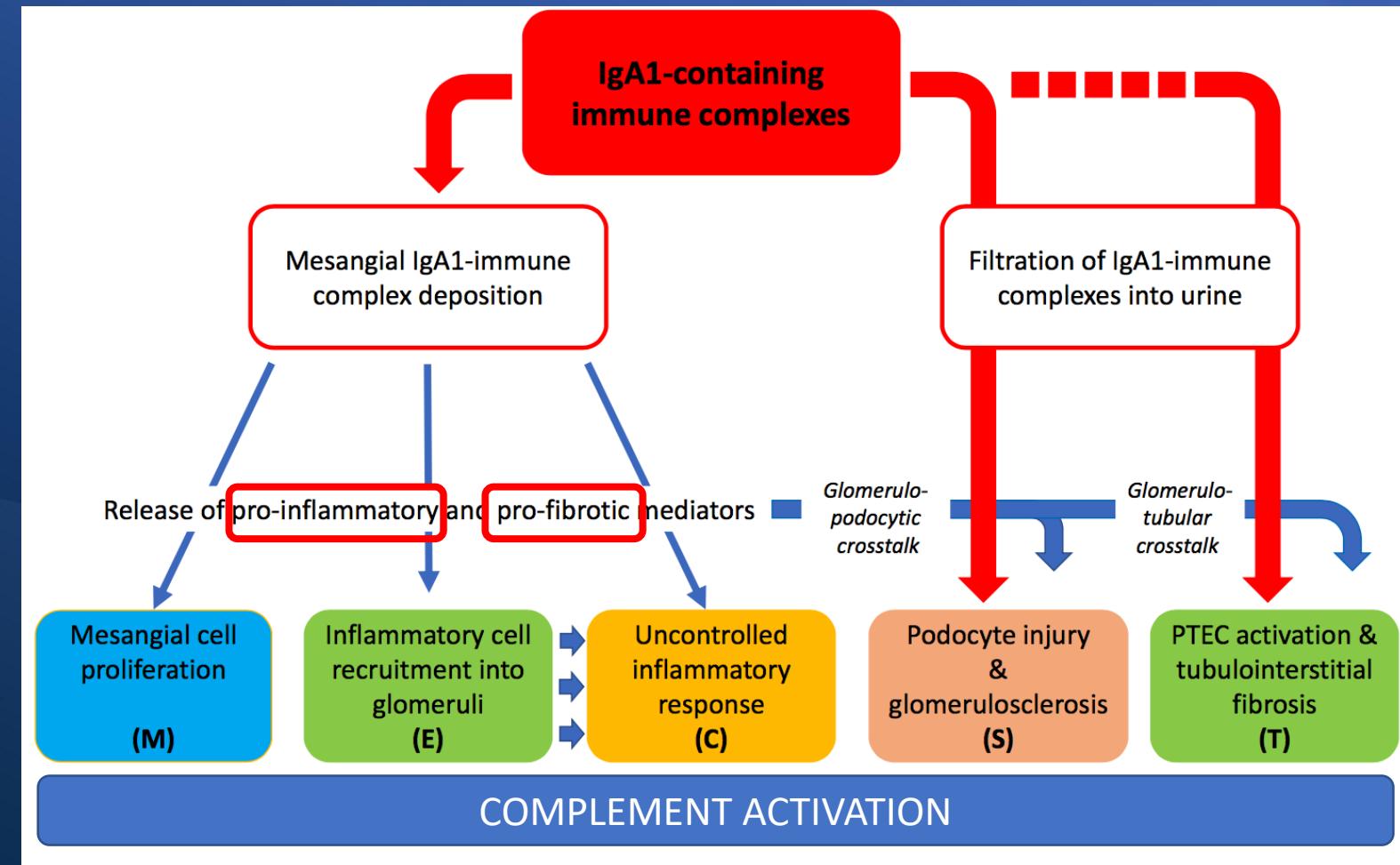


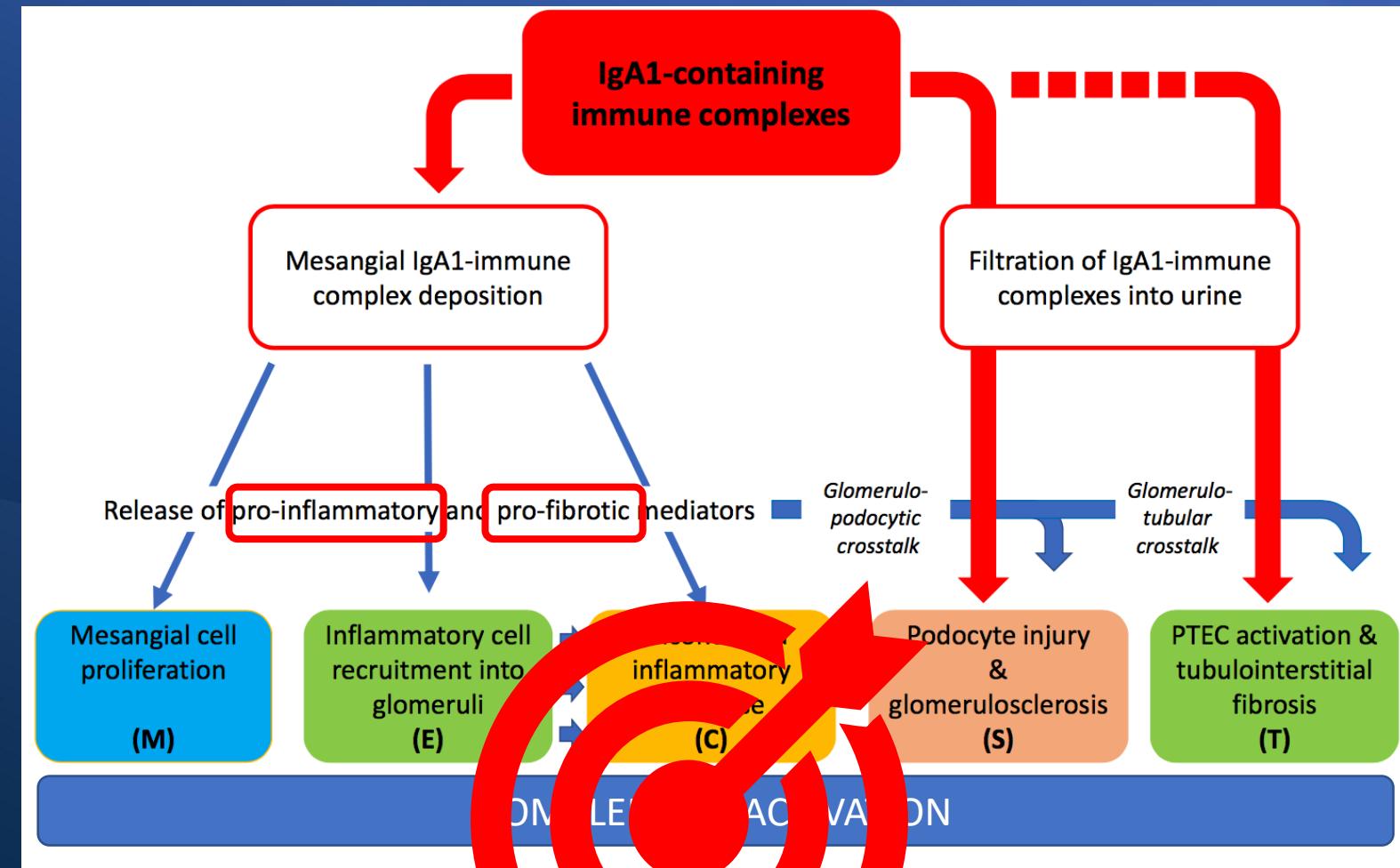






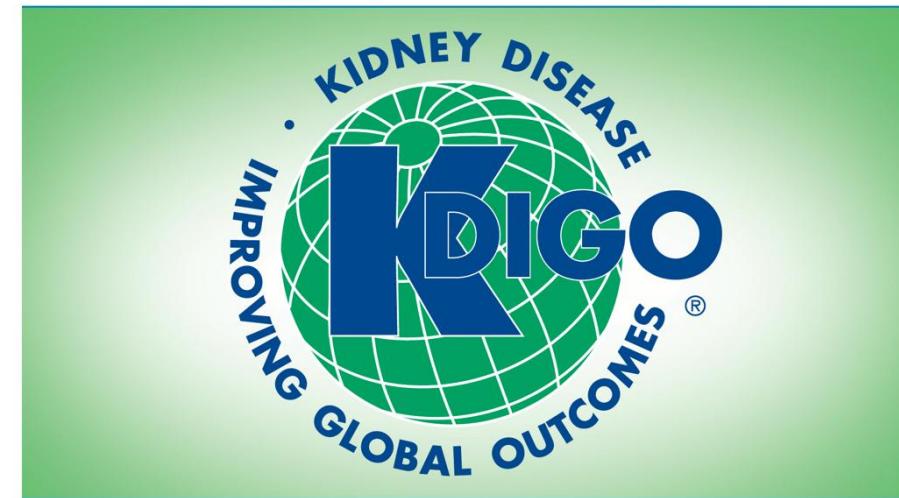






2025

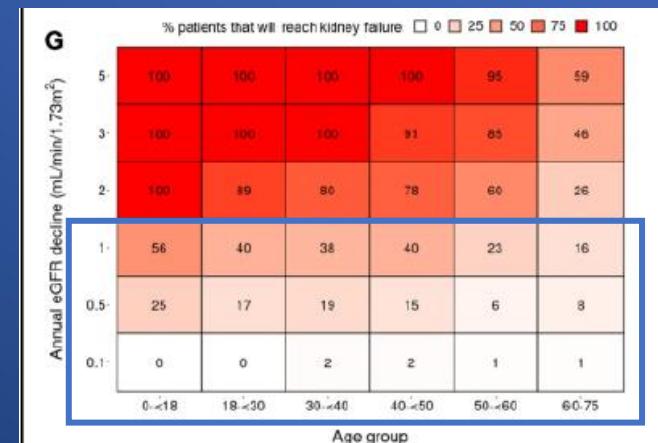
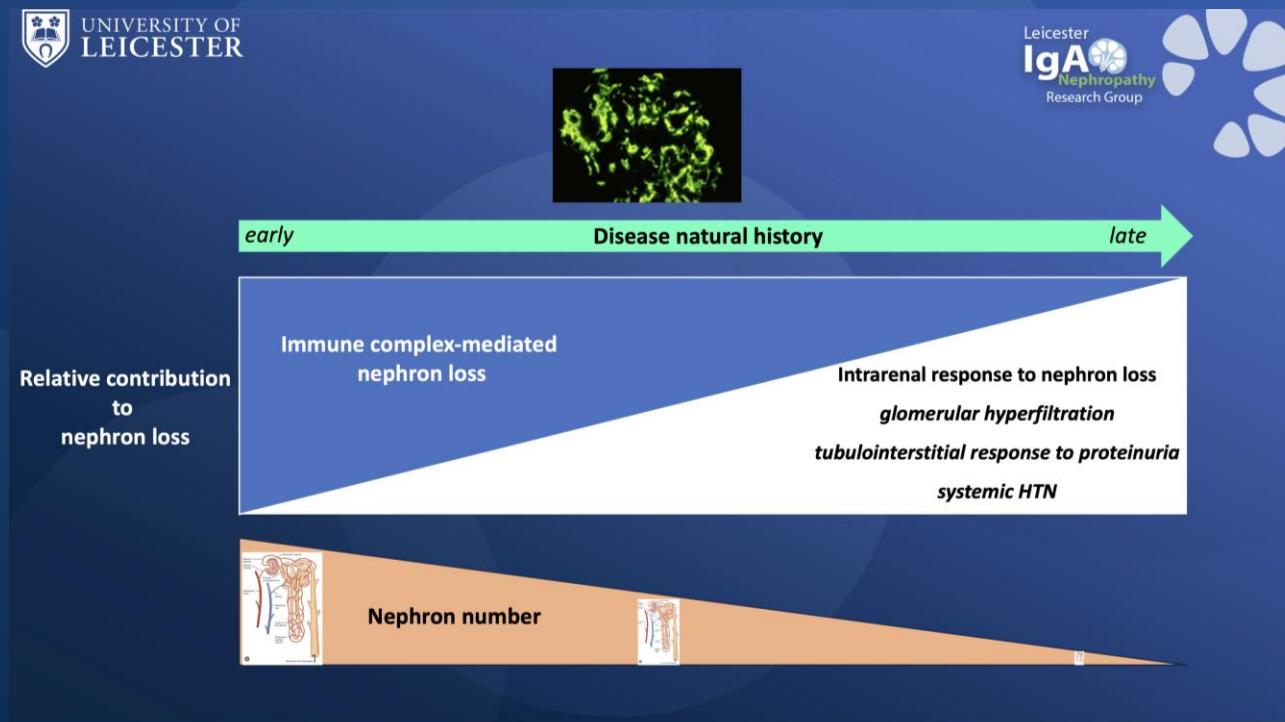
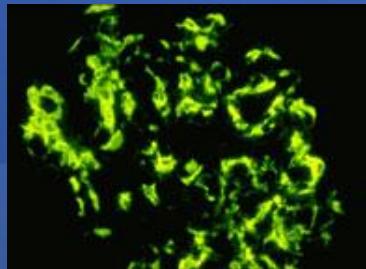
UNIVERSITY OF
LEICESTER


ARTICLE IN PRESS

OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF NEPHROLOGY

SUPPLEMENT TO

kidney[®] INTERNATIONAL




KDIGO 2025 Clinical Practice Guideline for the Management of Immunoglobulin A
Nephropathy (IgAN) and Immunoglobulin A Vasculitis (IgAV)

VOLUME 108 | ISSUE 55 | NOVEMBER 2025

www.kidney-international.org

Leicester
IgA
Nephropathy
Research Group

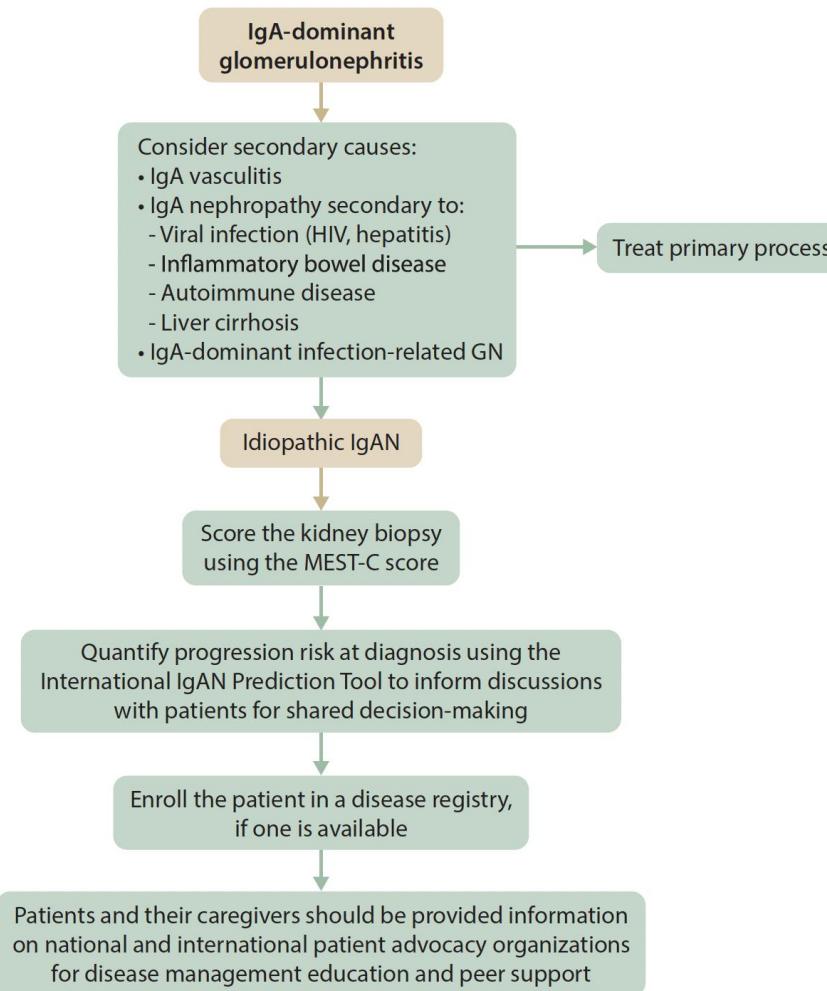
Diagnosis of IgA nephropathy

1.2 Diagnosis

Practice Point 1.2.1: Considerations regarding the diagnosis of immunoglobulin A nephropathy (IgAN):

- IgAN can be diagnosed only with a kidney biopsy, as there are no validated serum or urine biomarkers for the diagnosis of IgAN.
- To ensure an early diagnosis and prompt treatment of IgAN, a kidney biopsy should be considered in all adults with proteinuria ≥ 0.5 g/d (or equivalent) in whom IgAN is a possible diagnosis and kidney biopsy is not contraindicated.
- Once a diagnosis of IgAN is made, assess for secondary causes.
- In cases of primary IgAN, determine the MEST-C (mesangial [M] and endocapillary [E] hypercellularity, segmental sclerosis [S], interstitial fibrosis/tubular atrophy [T], and crescents [C]) score according to the revised Oxford Classification.³

Predicting Risk of progression in IgA nephropathy


1.3 Prognosis

Practice Point 1.3.1: Considerations regarding the prognosis of primary IgAN:

- Clinical and histologic data at the time of kidney biopsy can be used for risk stratification.
- The International IgAN Prediction Tools are a valuable resource to quantify short-term (up to 7 years from kidney biopsy) risk of progression and inform shared decision-making with patients.
 - International IgAN Prediction Tool at biopsy – Adults
 - International IgAN Prediction Tool post-biopsy – Adults
 - International IgAN Prediction Tool at biopsy – Pediatrics
 - International IgAN Prediction Tool post-biopsy – Pediatric
- The International IgAN Prediction Tools incorporate clinical information at the time of kidney biopsy or at 1 or 2 years post-biopsy (Figure 1).
- There are no validated prognostic serum or urine biomarkers for IgAN other than estimated glomerular filtration rate (eGFR) and proteinuria.

Practice Point 1.3.2: The initial assessment of the patient with IgAN is shown in [Figure 2](#).

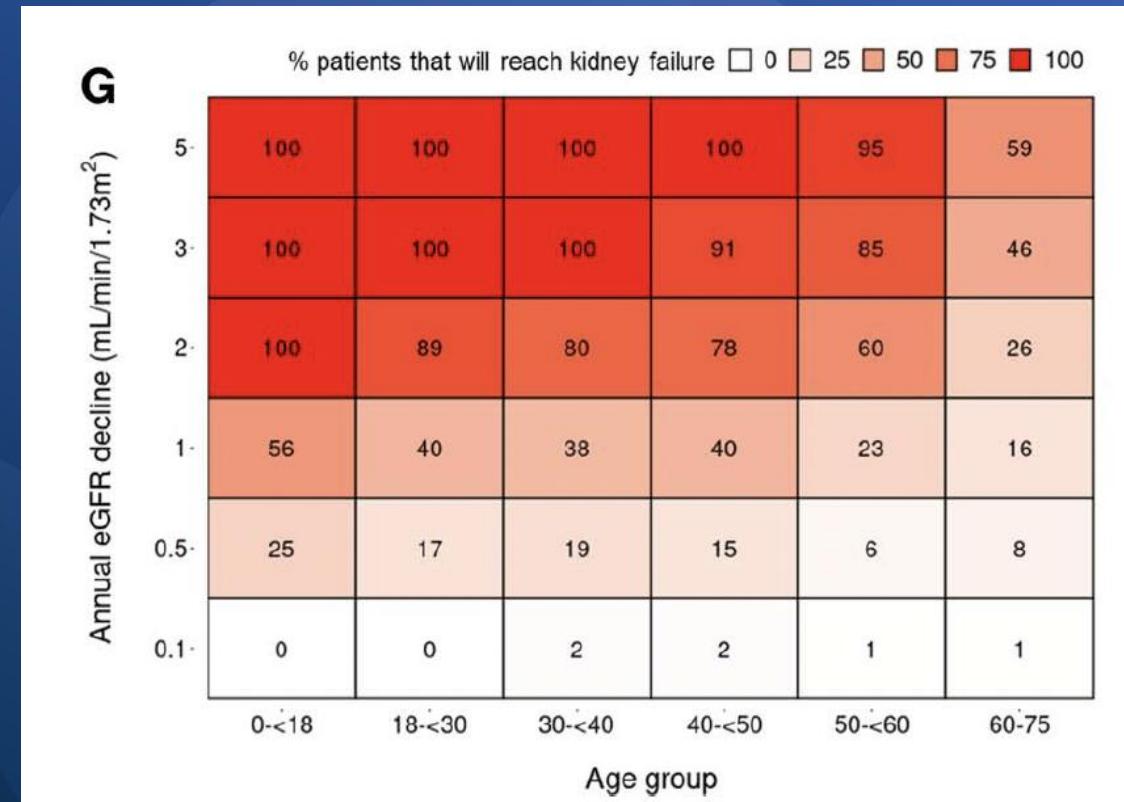
Figure 2 | Initial assessment and management of the patient with immunoglobulin A nephropathy (IgAN). GN, glomerulonephritis; HIV, human immunodeficiency virus; MEST-C, mesangial (M) and endocapillary (E) hypercellularity, segmental sclerosis (S), interstitial fibrosis/tubular atrophy (T), and crescents (C).

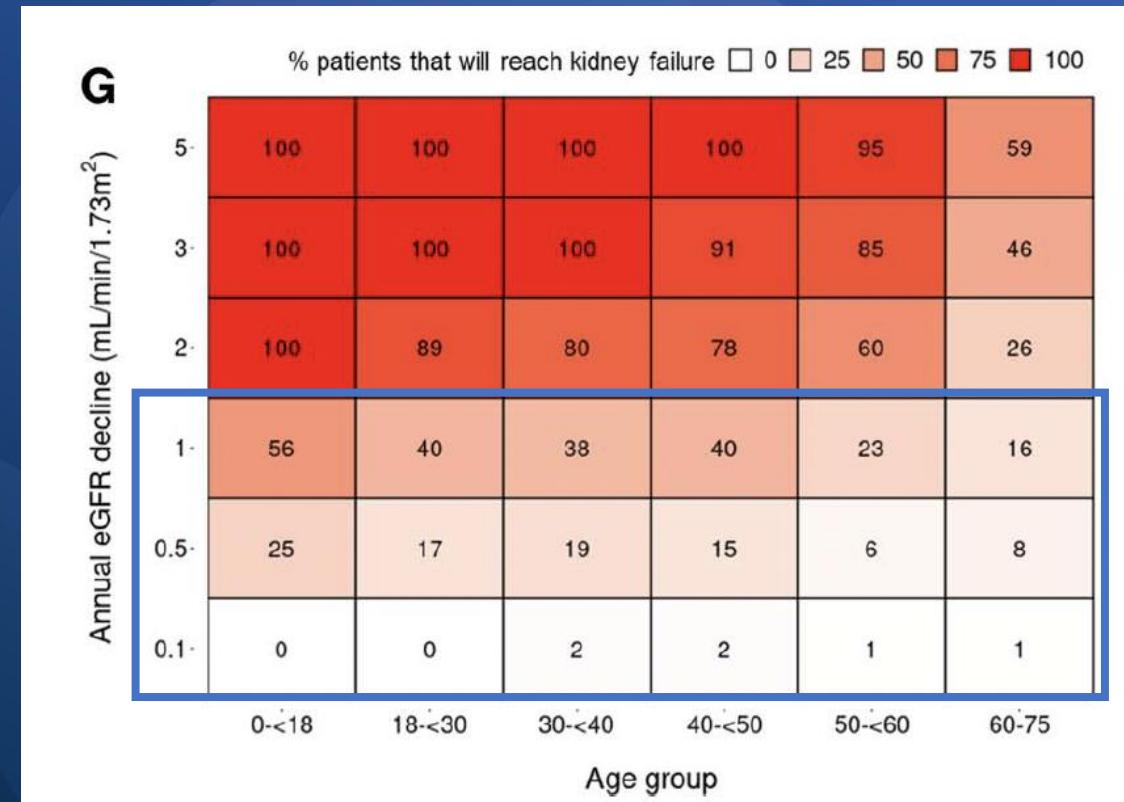
Threshold for treatment in IgA nephropathy

1.4 Treatment

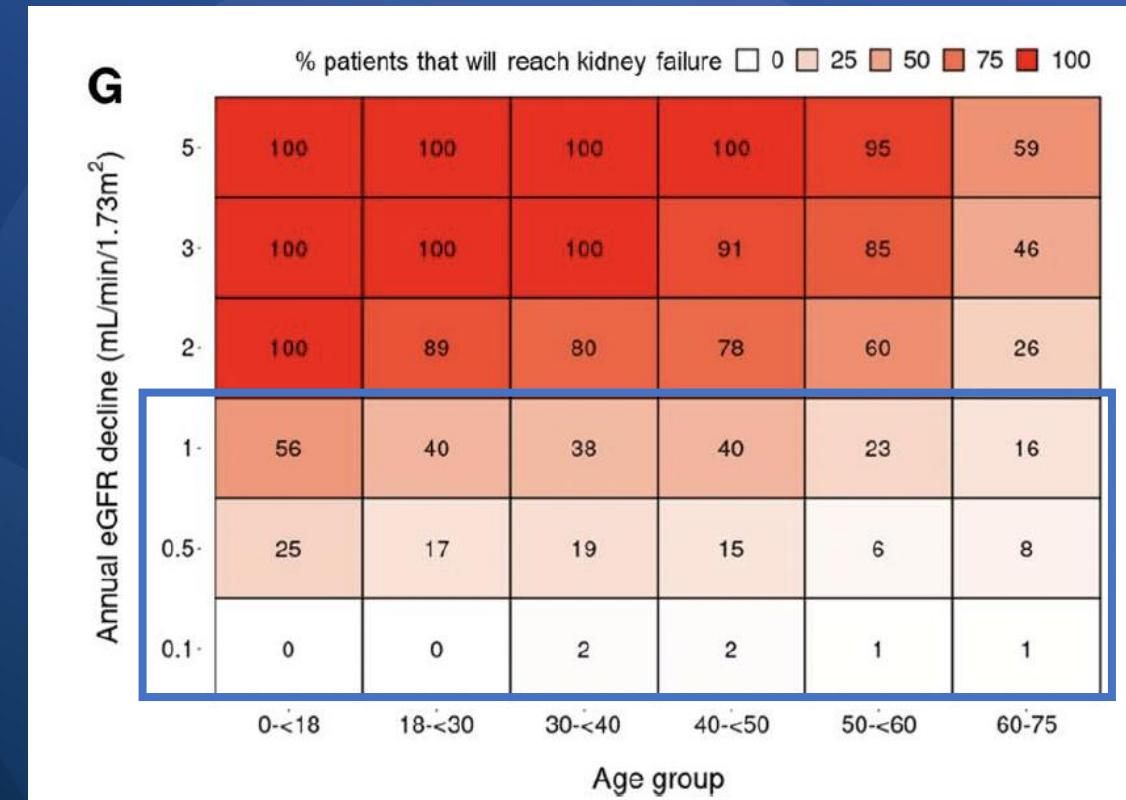
1.4.1 Defining patients with IgAN at risk of progressive loss of kidney function requiring treatment

Practice Point 1.4.1.1: Because patients with IgAN are at risk of progressive loss of kidney function if they have proteinuria ≥ 0.5 g/d (or equivalent) while on or off treatment of IgAN, treatment or additional treatment should be considered in all such cases.

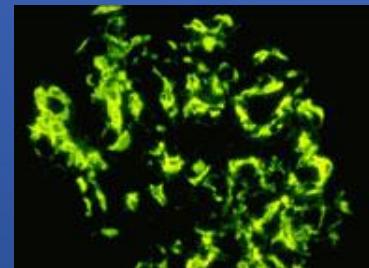



Treatment goal in IgA nephropathy

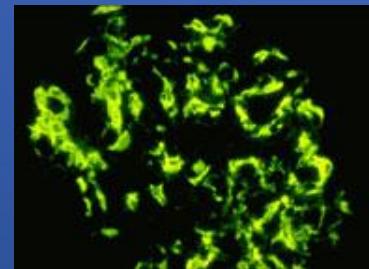
1.4.2 Defining a treatment goal in patients with IgAN at risk of progressive loss of kidney function


Practice Point 1.4.2.1: The treatment goal in patients with IgAN at risk of progressive loss of kidney function is to reduce the rate of loss of kidney function to the physiological state (i.e., <1 ml/min/yr for most adults) for the rest of the patient's life. The only validated early biomarker to help guide clinical decision-making is urine protein excretion, which should be maintained at a minimum of <0.5 g/d (or equivalent), and ideally at <0.3 g/d (or equivalent), accepting that in some patients with extensive kidney scarring, this may not be possible and that multiple treatment strategies, including non-pharmacologic interventions, may be needed to achieve this.

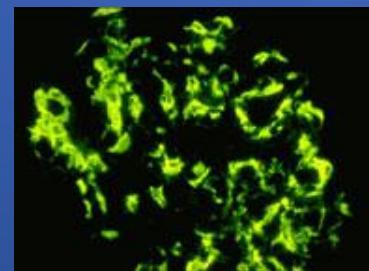
“The Future”



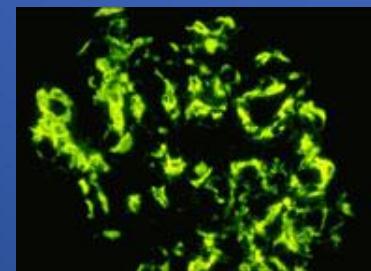
Treatment of IgA nephropathy

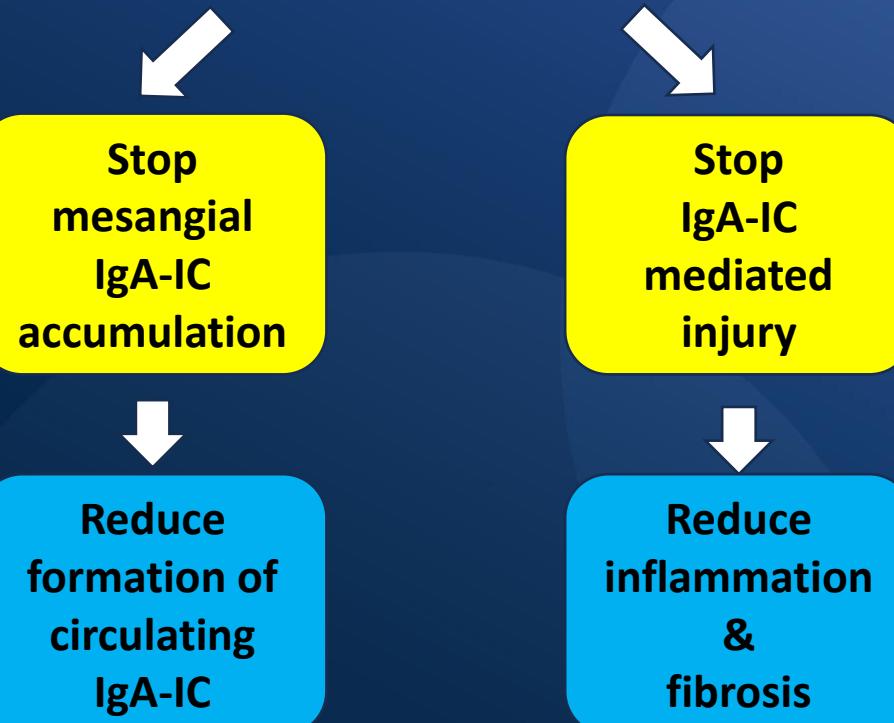


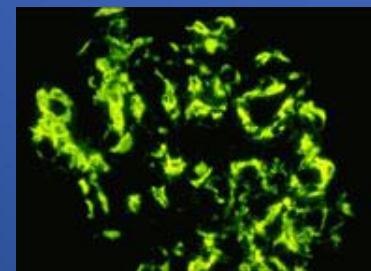
UNIVERSITY OF
LEICESTER



Leicester
IgA Nephropathy
Research Group


**Address immune &
inflammatory drivers of
continued nephron loss**

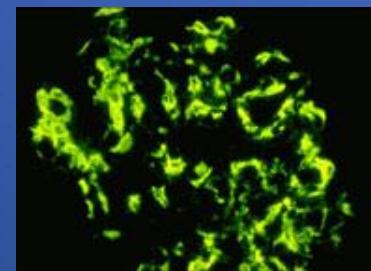

**Address immune &
inflammatory drivers of
continued nephron loss**


Stop
mesangial
IgA-IC
accumulation

Reduce
formation of
circulating
IgA-IC

Address immune &
inflammatory drivers of
continued nephron loss

Address immune &
inflammatory drivers of
continued nephron loss


Address generic CKD
drivers of continued
nephron loss

Stop
mesangial
IgA-IC
accumulation

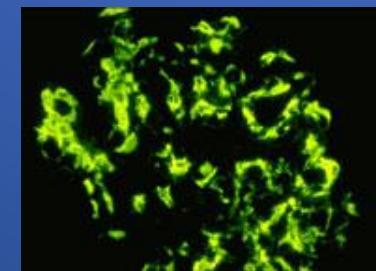
Stop
IgA-IC
mediated
injury

Reduce
formation of
circulating
IgA-IC

Reduce
inflammation
&
fibrosis

Address immune &
inflammatory drivers of
continued nephron loss

Address generic CKD
drivers of continued
nephron loss


Cardiovascular
risk reduction

Stop
mesangial
IgA-IC
accumulation

Stop
IgA-IC
mediated
injury

Reduce
formation of
circulating
IgA-IC

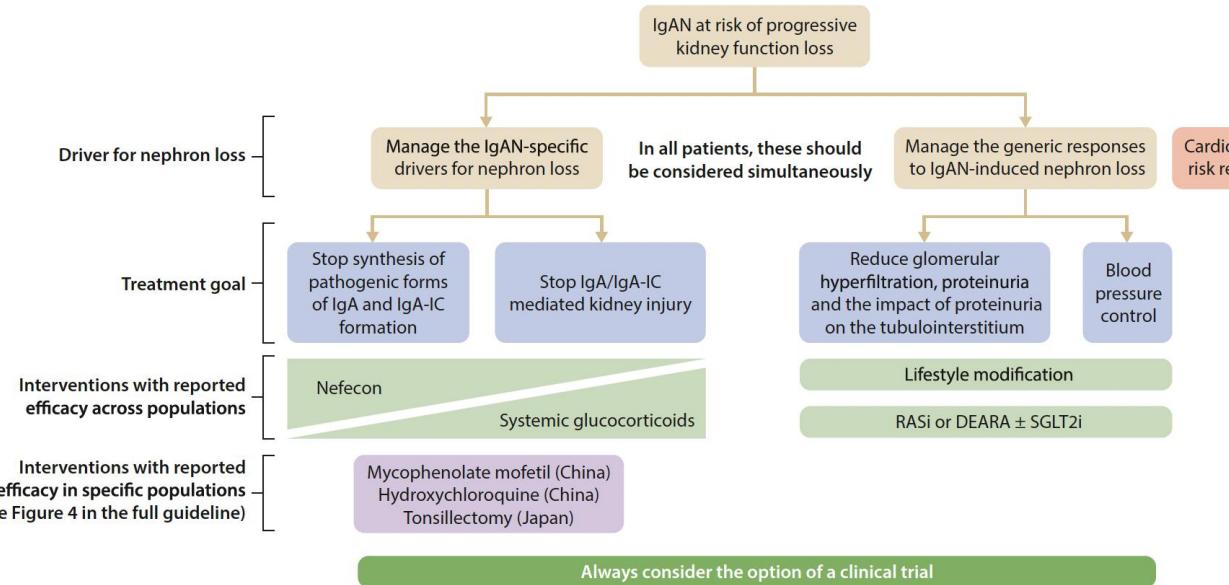
Reduce
inflammation
&
fibrosis

Address immune &
inflammatory drivers of
continued nephron loss

IN ALL PATIENTS THESE
SHOULD BE CONSIDERED
SIMULTANEOUSLY

Address generic CKD
drivers of continued
nephron loss

Cardiovascular
risk reduction


Stop
mesangial
IgA-IC
accumulation

Stop
IgA-IC
mediated
injury

Reduce
formation of
circulating
IgA-IC

Reduce
inflammation
&
fibrosis

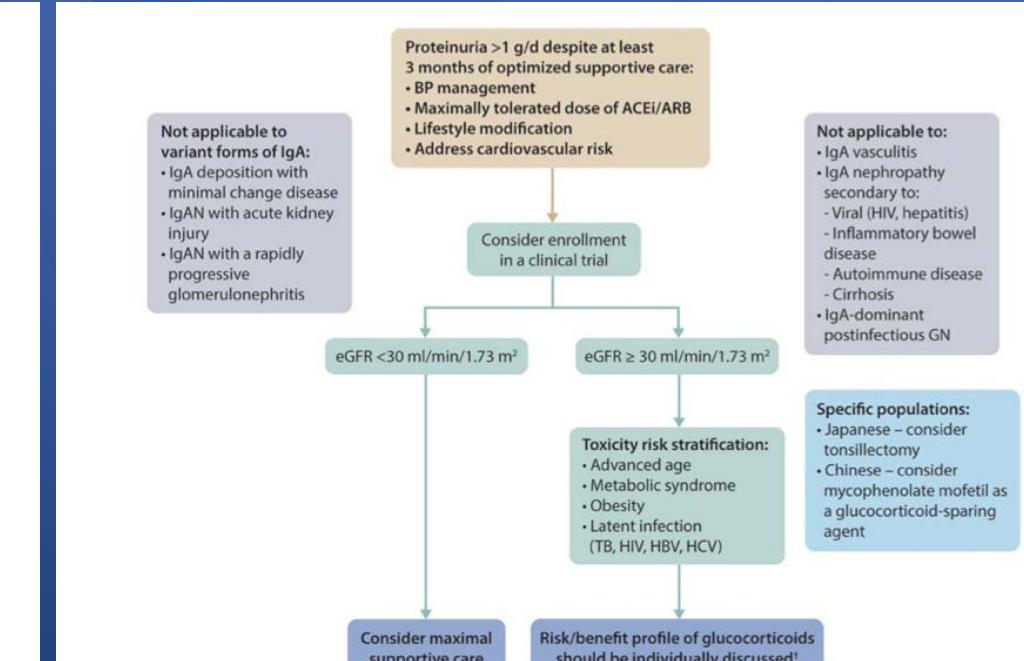
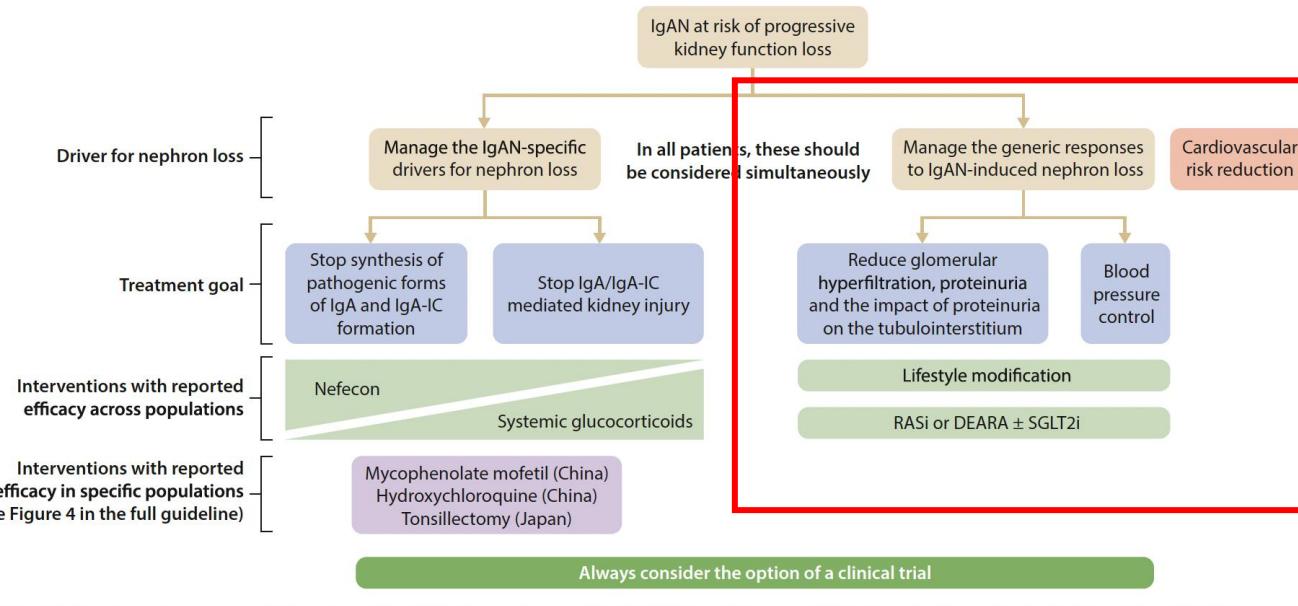

2025

Figure 2 | Treatment targets in immunoglobulin A nephropathy (IgAN) and the positioning of drugs included in this guideline.


Reflecting current understanding, Nefcon is shown as having a predominant effect on the production of pathogenic forms of IgA and IgA-containing immune complexes (IgA-ICs), with an undetermined direct effect of systemically absorbed budesonide on the kidneys. Systemic glucocorticoids have a well-documented anti-inflammatory effect within the kidneys and an undetermined direct effect on the production of pathogenic forms of IgA and IgA-ICs. Strategies to manage the generic response to IgAN-induced nephron loss may also include the use of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors in selected patients. DEARA, dual endothelin angiotensin receptor antagonist; RASI, renin-angiotensin system inhibitor; SGLT2i, sodium-glucose cotransporter-2 inhibitor.

2021

Figure 24 | Management of patients with IgAN who remain at high risk for progression after maximal supportive care. ¹IgAN with rapidly progressive glomerulonephritis is covered in Practice Point 2.4.3. ²The TESTING study¹⁰⁹ shows early evidence of efficacy in patients who had marked proteinuria (2.4 g/d average) at the expense of treatment-associated morbidity and mortality. ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; BP, blood pressure; eGFR, estimated glomerular filtration rate; GN, glomerulonephritis; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IgAN, immunoglobulin A nephropathy; TB, tuberculosis.

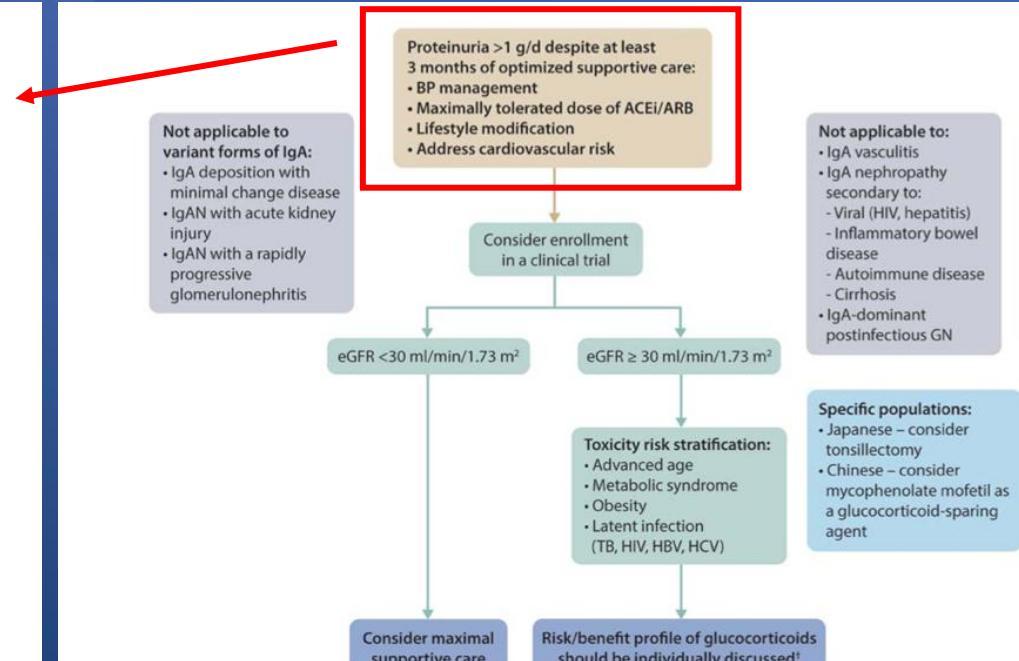
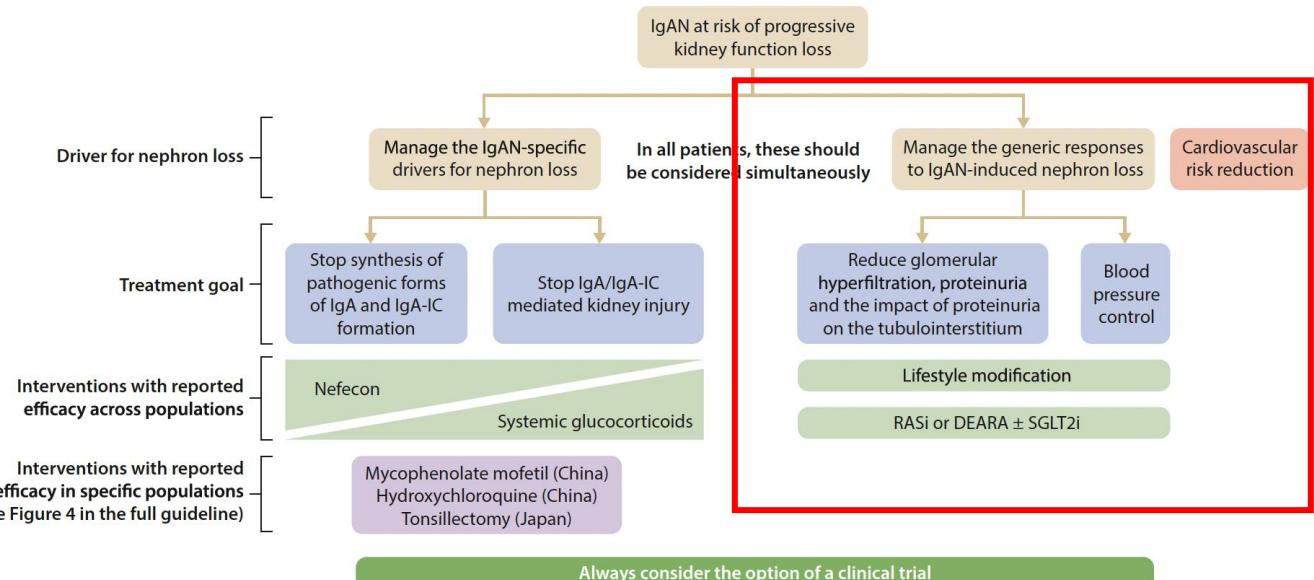

2025

Figure 2 | Treatment targets in immunoglobulin A nephropathy (IgAN) and the positioning of drugs included in this guideline.


Reflecting current understanding, Nefcon is shown as having a predominant effect on the production of pathogenic forms of IgA and IgA-containing immune complexes (IgA-ICs), with an undetermined direct effect of systemically absorbed budesonide on the kidneys. Systemic glucocorticoids have a well-documented anti-inflammatory effect within the kidneys and an undetermined direct effect on the production of pathogenic forms of IgA and IgA-ICs. Strategies to manage the generic response to IgAN-induced nephron loss may also include the use of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors in selected patients. DEARA, dual endothelin angiotensin receptor antagonist; RASI, renin-angiotensin system inhibitor; SGLT2i, sodium-glucose cotransporter-2 inhibitor.

2021

Figure 24 | Management of patients with IgAN who remain at high risk for progression after maximal supportive care. ¹IgAN with rapidly progressive glomerulonephritis is covered in Practice Point 2.4.3. ²The TESTING study¹⁰⁹ shows early evidence of efficacy in patients who had marked proteinuria (2.4 g/d average) at the expense of treatment-associated morbidity and mortality. ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; BP, blood pressure; eGFR, estimated glomerular filtration rate; GN, glomerulonephritis; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IgAN, immunoglobulin A nephropathy; TB, tuberculosis.

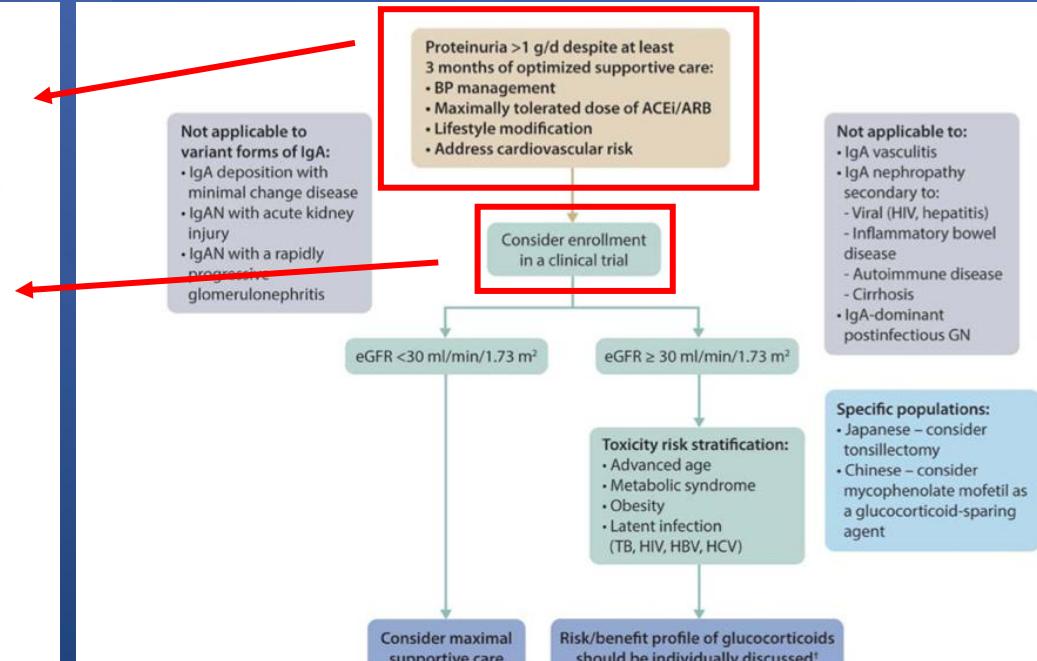
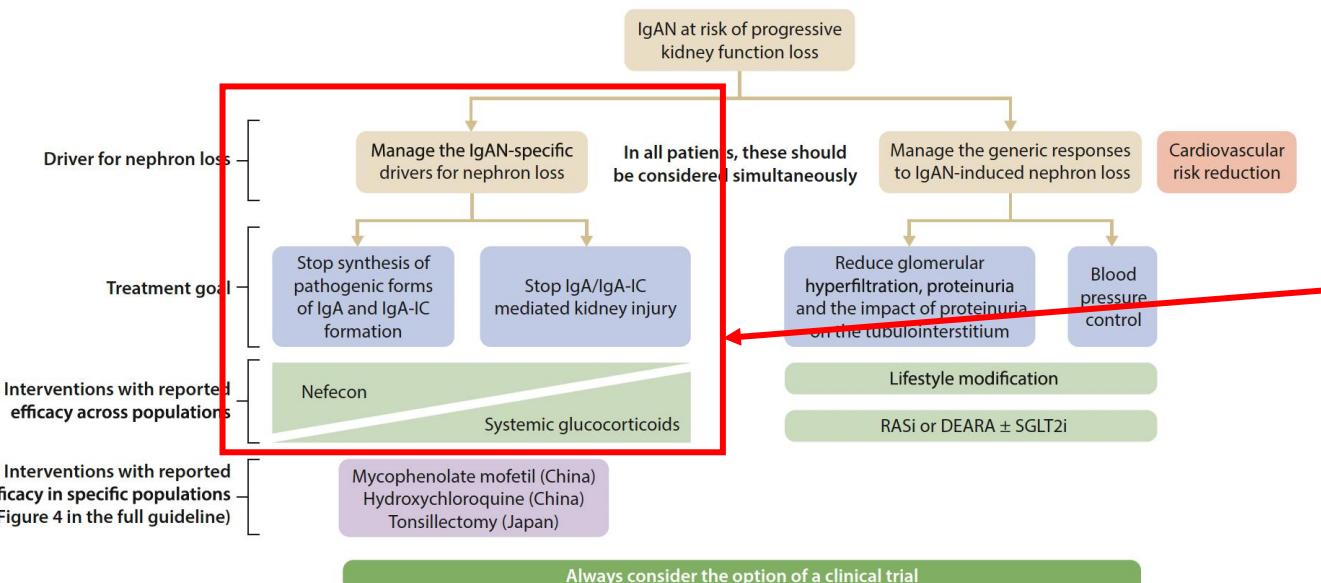
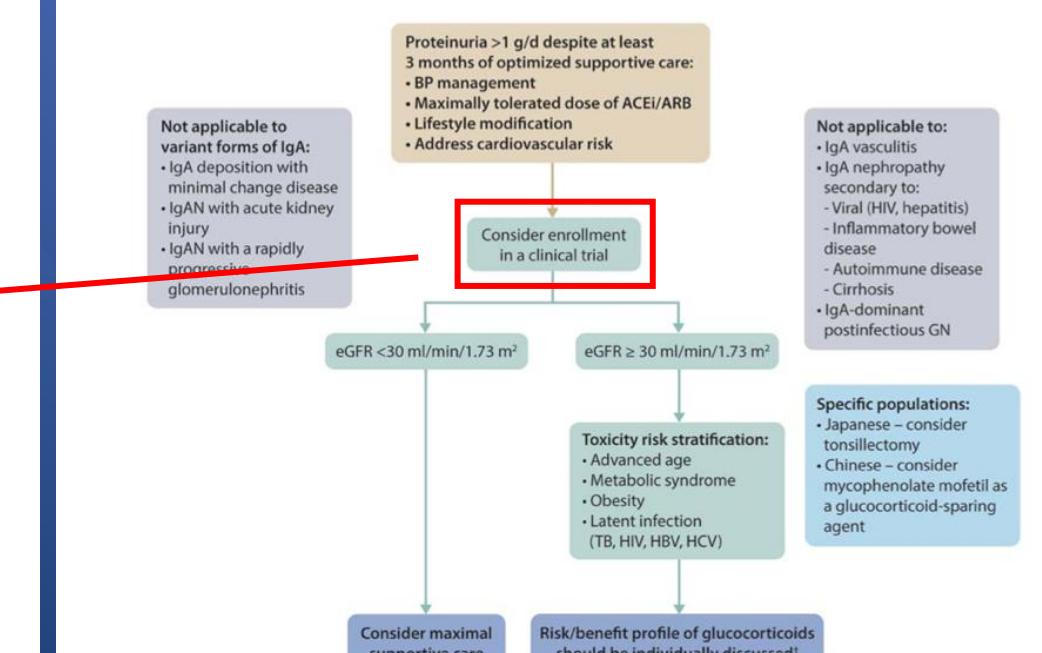

2025

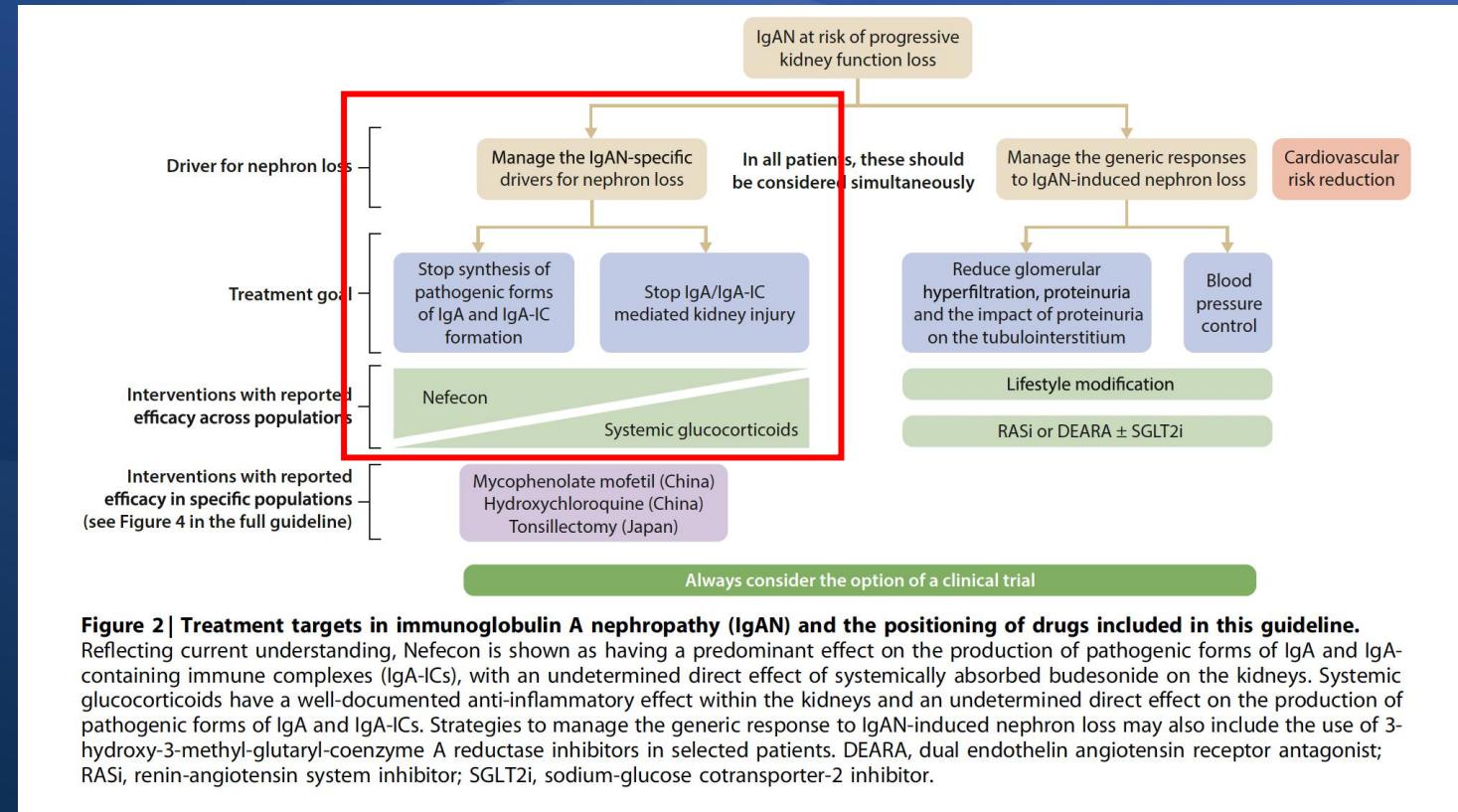
Figure 2 | Treatment targets in immunoglobulin A nephropathy (IgAN) and the positioning of drugs included in this guideline.


Reflecting current understanding, Nefcon is shown as having a predominant effect on the production of pathogenic forms of IgA and IgA-containing immune complexes (IgA-ICs), with an undetermined direct effect of systemically absorbed budesonide on the kidneys. Systemic glucocorticoids have a well-documented anti-inflammatory effect within the kidneys and an undetermined direct effect on the production of pathogenic forms of IgA and IgA-ICs. Strategies to manage the generic response to IgAN-induced nephron loss may also include the use of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors in selected patients. DEARA, dual endothelin angiotensin receptor antagonist; RASI, renin-angiotensin system inhibitor; SGLT2i, sodium-glucose cotransporter-2 inhibitor.

2021

Figure 24 | Management of patients with IgAN who remain at high risk for progression after maximal supportive care. ¹IgAN with rapidly progressive glomerulonephritis is covered in Practice Point 2.4.3. ²The TESTING study¹⁰⁹ shows early evidence of efficacy in patients who had marked proteinuria (2.4 g/d average) at the expense of treatment-associated morbidity and mortality. ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; BP, blood pressure; eGFR, estimated glomerular filtration rate; GN, glomerulonephritis; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IgAN, immunoglobulin A nephropathy; TB, tuberculosis.


2025


Figure 2 | Treatment targets in immunoglobulin A nephropathy (IgAN) and the positioning of drugs included in this guideline.

Reflecting current understanding, Nefcon is shown as having a predominant effect on the production of pathogenic forms of IgA and IgA-containing immune complexes (IgA-ICs), with an undetermined direct effect of systemically absorbed budesonide on the kidneys. Systemic glucocorticoids have a well-documented anti-inflammatory effect within the kidneys and an undetermined direct effect on the production of pathogenic forms of IgA and IgA-ICs. Strategies to manage the generic response to IgAN-induced nephron loss may also include the use of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors in selected patients. DEARA, dual endothelin angiotensin receptor antagonist; RASi, renin-angiotensin system inhibitor; SGLT2i, sodium-glucose cotransporter-2 inhibitor.

2021

Figure 24 | Management of patients with IgAN who remain at high risk for progression after maximal supportive care. ¹IgAN with rapidly progressive glomerulonephritis is covered in Practice Point 2.4.3. ²The TESTING study¹⁰⁹ shows early evidence of efficacy in patients who had marked proteinuria (2.4 g/d average) at the expense of treatment-associated morbidity and mortality. ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; BP, blood pressure; eGFR, estimated glomerular filtration rate; GN, glomerulonephritis; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IgAN, immunoglobulin A nephropathy; TB, tuberculosis.

Figure 2 | Treatment targets in immunoglobulin A nephropathy (IgAN) and the positioning of drugs included in this guideline.

Reflecting current understanding, Nefcon is shown as having a predominant effect on the production of pathogenic forms of IgA and IgA-containing immune complexes (IgA-ICs), with an undetermined direct effect of systemically absorbed budesonide on the kidneys. Systemic glucocorticoids have a well-documented anti-inflammatory effect within the kidneys and an undetermined direct effect on the production of pathogenic forms of IgA and IgA-ICs. Strategies to manage the generic response to IgAN-induced nephron loss may also include the use of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors in selected patients. DEARA, dual endothelin angiotensin receptor antagonist; RASi, renin-angiotensin system inhibitor; SGLT2i, sodium-glucose cotransporter-2 inhibitor.

1.4.3 Managing the IgAN-specific drivers of nephron loss

Recommendation 1.4.3.1: We suggest treatment with a 9-month course of Nefecon for patients who are at risk of progressive loss of kidney function with IgAN (2B).

Practice Point 1.4.3.1: Factors to consider before using Nefecon in patients with IgAN:

- A 9-month treatment course of Nefecon, a targeted-release formulation of budesonide, may not result in a sustained clinical response in terms of proteinuria reduction or eGFR stabilization.
- Data on the safety and efficacy of additional courses of Nefecon are awaited.
- Nefecon's approval status, labeled indication, and availability vary globally.

Articles

Efficacy and safety of a targeted-release formulation of budesonide in patients with primary IgA nephropathy (NeflgArd): 2-year results from a randomised phase 3 trial

Richard Lafayete, Jens Kristensen, Andrew Stone, Jürgen Fliege, Vladimir Tesal, Hernán Trimbach, Hong Zhang, Necmi Erer, Alexander Paliogi, Heather N Reidy, Brad H Rovin, Jonathan Barrett, on behalf of the NeflgArd trial investigators

Summary

Background IgA nephropathy is a chronic immune-mediated kidney disease and a major cause of kidney failure worldwide. The gut mucosal immune system is implicated in its pathogenesis, and Nefcon is a novel, oral, targeted-release formulation of budesonide designed to act at the gut mucosal level. We present findings from the 2-year, phase 3 NeflgArd trial of Nefcon in patients with IgA nephropathy.

Methods In this phase 3, multicentre, randomised, double-blind, placebo-controlled trial, adult patients (aged ≥ 18 years) with primary IgA nephropathy, estimated glomerular filtration rate (eGFR) $35-90$ mL/min per 1.73 m 2 and persistent proteinuria (urine protein:creatinine ratio ≥ 0.8 g/g or proteinuria ≥ 1 g/24 h) despite optimised renin-angiotensin system blockade were enrolled at 132 hospital-based clinical sites in 20 countries worldwide. Patients were randomly assigned (1:1) to receive 16 mg/day oral capsules of Nefcon or matching placebo for 9 months, followed by a 15-month observational follow-up period after study randomisation via an interactive response technology system was stratified according to baseline proteinuria (<2 or ≥ 2 g/24 h), baseline eGFR (<60 or ≥ 60 mL/min per 1.73 m 2), and region (Asia/Pacific, North America, or South America). Patients, investigators, and site staff were masked to treatment assignment throughout the 2-year trial. Optimised supportive care was also continued throughout the trial. The primary efficacy endpoint was time-weighted average of eGFR over 2 years. Efficacy and safety analyses were done in the full analysis set (ie, all randomly assigned patients). The trial was registered on ClinicalTrials.gov, NCT03643595, and is completed.

Findings Patients were recruited to the NeflgArd trial between Sept 5, 2018, and Jan 20, 2021, with 364 patients (182 per treatment group) randomly assigned in the full analysis set. 240 (66%) patients were men and 124 (34%) were women, and 275 (76%) identified as White. The time-weighted average of eGFR over 2 years showed a statistically significant treatment benefit with Nefcon versus placebo (difference 5.05 mL/min per 1.73 m 2 [95% CI 3.2–24.7; p=0.0001], with a time-weighted average change of -2.47 mL/min per 1.73 m 2 [95% CI -3.88 to -1.02] reported with Nefcon and -7.52 mL/min per 1.73 m 2 [-8.33 to -6.18] reported with placebo. The most commonly reported treatment-emergent adverse events during treatment with Nefcon were peripheral oedema (31 [17%] patients, vs placebo, seven [4%] patients), hypertension (22 [12%] vs six [3%]), muscle spasms (22 [12%] vs seven [4%]), acne (20 [11%] vs two [1%]), and headache (19 [10%] vs 14 [8%]). No treatment-related deaths were reported.

Interpretation A 9-month treatment period with Nefcon provided a clinically relevant reduction in eGFR decline and a durable reduction in proteinuria versus placebo, providing support for a disease-modifying effect in patients with IgA nephropathy. Nefcon was also well tolerated, with a safety profile as expected for a locally acting oral budesonide product.

Funding Ciliditas Therapeutics.

Copyright © 2023 Elsevier Ltd. All rights reserved.

Introduction

IgA nephropathy is a chronic immune-mediated kidney disease characterised by IgA deposition in the glomeruli.¹ IgA nephropathy is the most common primary glomerular disease globally and has serious consequences, including reduced life expectancy; most patients with IgA nephropathy are expected to develop kidney failure, with up to 50% doing so within 20 years of presentation.^{2,3} Therefore, IgA nephropathy places a substantial burden on patients and health-care services

Published Online

August 14, 2023

https://doi.org/10.1016/S0140-6736(23)01554-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01533-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01534-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01535-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01536-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01537-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01538-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01539-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01540-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01541-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01542-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01543-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01544-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01545-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01546-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01547-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01548-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01549-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01550-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01551-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01552-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01553-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01554-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01555-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01556-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01557-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01558-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01559-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01560-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01561-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01562-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01563-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01564-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01565-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01566-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01567-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01568-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01569-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01570-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01571-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01572-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01573-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01574-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01575-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01576-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01577-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01578-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01579-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01580-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01581-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01582-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01583-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01584-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01585-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01586-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01587-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01588-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01589-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01590-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01591-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01592-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01593-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01594-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01595-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01596-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01597-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01598-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01599-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01600-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01601-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01602-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01603-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01604-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01605-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01606-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01607-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01608-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01609-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01610-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01611-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01612-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01613-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01614-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01615-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01616-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01617-1

See Online Comment

Articles

Efficacy and safety of a targeted-release formulation of budesonide in patients with primary IgA nephropathy (NeflgArd): 2-year results from a randomised phase 3 trial

Richard Lafayete, Jens Kristensen, Andrew Stone, Jürgen Fliege, Vladimir Tesal, Hernán Trimbach, Hong Zhang, Necmi Erer, Alexander Paliogi, Heather N Reidy, Brad H Rovin, Jonathan Barrett, on behalf of the NeflgArd trial investigators

Summary

Background IgA nephropathy is a chronic immune-mediated kidney disease and a major cause of kidney failure worldwide. The gut mucosal immune system is implicated in its pathogenesis, and Nefcon is a novel, oral, targeted-release formulation of budesonide designed to act at the gut mucosal level. We present findings from the 2-year, phase 3 NeflgArd trial of Nefcon in patients with IgA nephropathy.

Methods In this phase 3, multicentre, randomised, double-blind, placebo-controlled trial, adult patients (aged ≥ 18 years) with primary IgA nephropathy, estimated glomerular filtration rate (eGFR) $35-90$ mL/min per 1.73 m 2 , and persistent proteinuria (urine protein:creatinine ratio ≥ 0.8 g/g or proteinuria ≥ 1 g/24 h) despite optimised renin-angiotensin system blockade were enrolled at 132 hospital-based clinical sites in 20 countries worldwide. Patients were randomly assigned (1:1) to receive 16 mg/day oral capsules of Nefcon or matching placebo for 9 months, followed by a 15-month observational follow-up period after study drug. Randomisation via an interactive response technology system was stratified according to baseline proteinuria (<2 or ≥ 2 g/24 h), baseline eGFR (<60 or ≥ 60 mL/min per 1.73 m 2), and region (Asia/Pacific, North America, or South America). Patients, investigators, and site staff were masked to treatment assignment throughout the 2-year trial. Optimised supportive care was also continued throughout the trial. The primary efficacy endpoint was time-weighted average of eGFR over 2 years. Efficacy and safety analyses were done in the full analysis set (ie, all randomly assigned patients). The trial was registered on ClinicalTrials.gov, NCT03643595, and is completed.

Findings Patients were recruited to the NeflgArd trial between Sept 5, 2018, and Jan 20, 2021, with 364 patients (182 per treatment group) randomly assigned in the full analysis set. 240 (66%) patients were men and 124 (34%) were women, and 275 (76%) identified as White. The time-weighted average of eGFR over 2 years showed a statistically significant treatment benefit with Nefcon versus placebo (difference 5.05 mL/min per 1.73 m 2 [95% CI 3.2–24.7; p=0.0001]), with a time-weighted average change of -2.47 mL/min per 1.73 m 2 (95% CI -3.38 to -1.6) reported with Nefcon and -7.52 mL/min per 1.73 m 2 (-8.33 to -6.18) reported with placebo. The most commonly reported treatment-emergent adverse events during treatment with Nefcon were peripheral oedema (31 [17%] patients, vs placebo, seven [4%] patients), hypertension (22 [12%] vs six [3%]), muscle spasms (22 [12%] vs seven [4%]), acne (20 [11%] vs two [1%]), and headache (19 [10%] vs 14 [8%]). No treatment-related deaths were reported.

Interpretation A 9-month treatment period with Nefcon provided a clinically relevant reduction in eGFR decline and a durable reduction in proteinuria versus placebo, providing support for a disease-modifying effect in patients with IgA nephropathy. Nefcon was also well tolerated, with a safety profile as expected for a locally acting oral budesonide product.

Funding Ciliditas Therapeutics.

Copyright © 2023 Elsevier Ltd. All rights reserved.

Introduction

IgA nephropathy is a chronic immune-mediated kidney disease characterised by IgA deposition in the glomeruli.¹ IgA nephropathy is the most common primary glomerular disease globally and has serious consequences, including reduced life expectancy; most patients with IgA nephropathy are expected to develop proteinuria, and addressing cardiovascular risk.² After supportive care, patients who remain at high risk for progressive chronic kidney disease should be considered for a clinical trial, or for systemic glucocorticoids (if they

Published Online

August 14, 2023

https://doi.org/10.1016/S0140-6736(23)01554-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01533-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01534-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01535-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01536-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01537-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01538-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01539-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01540-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01541-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01542-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01543-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01544-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01545-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01546-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01547-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01548-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01549-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01550-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01551-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01552-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01553-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01554-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01555-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01556-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01557-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01558-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01559-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01560-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01561-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01562-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01563-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01564-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01565-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01566-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01567-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01568-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01569-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01570-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01571-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01572-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01573-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01574-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01575-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01576-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01577-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01578-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01579-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01580-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01581-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01582-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01583-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01584-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01585-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01586-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01587-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01588-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01589-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01590-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01591-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01592-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01593-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01594-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01595-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01596-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01597-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01598-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01599-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01600-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01601-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01602-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01603-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01604-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01605-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01606-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01607-1

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01608-2

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01609-3

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01610-4

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01611-5

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01612-6

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01613-7

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01614-8

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01615-9

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01616-0

See Online Comment

https://doi.org/10.1016/S0140-6736(23)01617-1

See Online Comment

	9-month treatment period*		15-month observational follow-up period†	
	Nefcon 16 mg/day (n=182)	Placebo (n=182)	Nefcon 16 mg/day (n=175)‡	Placebo (n=174)‡
All treatment-emergent adverse events	159 (87%)	125 (69%)	127 (73%)	124 (71%)
Mild	93 (51%)	75 (41%)	62 (35%)	73 (42%)
Moderate	57 (31%)	46 (25%)	49 (28%)	43 (25%)
Severe	9 (5%)	4 (2%)	16 (9%)	8 (5%)
Any treatment-emergent serious adverse events	18 (10%)	9 (5%)	14 (8%)	14 (8%)
Any treatment-related treatment-emergent serious adverse events	4 (2%)	4 (2%)	0	1 (1%)
Any treatment-emergent adverse events leading to death	1 (1%)	0	1 (1%)	0
Any treatment-emergent adverse events leading to discontinuation of study treatment	17 (9%)	3 (2%)	NA	NA

Data are number of patients (%). NA=not applicable. *Includes adverse events that started or worsened during treatment, up to 14 days (inclusive) after the last treatment dose (ie, the last dose the patient received including the tapering period, regardless of treatment duration). Five patients (two in the Nefcon group and three in the placebo group) did not start study treatment. †Includes adverse events that started more than 14 days after the last treatment dose. ‡Number of patients who had a study visit during the observational follow-up period.

Table 3: Key safety variables (full analysis set)

Why target the gut to treat the kidneys?

A New treatment paradigm for IgA nephropathy

Professor Jonathan Barratt
University of Leicester
&
John Walls Renal Unit,
Leicester

December 7th 12.30–13.30

1.4.3 Managing the IgAN-specific drivers of nephron loss

Recommendation 1.4.3.1: We suggest treatment with a 9-month course of Nefecon for patients who are at risk of progressive loss of kidney function with IgAN (2B).

Practice Point 1.4.3.1: Factors to consider before using Nefecon in patients with IgAN:

- A 9-month treatment course of Nefecon, a targeted-release formulation of budesonide, may not result in a sustained clinical response in terms of proteinuria reduction or eGFR stabilization.
- Data on the safety and efficacy of additional courses of Nefecon are awaited.
- Nefecon's approval status, labeled indication, and availability vary globally.

Recommendation 1.4.3.2: In settings where Nefecon is not available, we suggest that patients who are at risk of progressive loss of kidney function with IgAN be treated with a reduced-dose systemic glucocorticoid regimen combined with antimicrobial prophylaxis (2B).

Practice Point 1.4.3.2: Reduced-dose systemic glucocorticoid regimen:

- Methylprednisolone (or equivalent) 0.4 mg/kg/d (maximum 32 mg/d) for 2 months followed by dose tapering by 4 mg/d each month for a total of 6–9 months.
- The conversion of methylprednisolone to commonly used forms of systemic glucocorticoids is as follows: 1 mg of methylprednisolone equals 1.25 mg of prednisone or prednisolone.
- Treatment with systemic glucocorticoids should incorporate antimicrobial prophylaxis against *Pneumocystis jirovecii* and antiviral prophylaxis in hepatitis B carriers, along with gastroprotection and bone protection according to national guidelines.

Practice Point 1.4.3.3: Factors that increase the risk of toxicity of systemic glucocorticoids:

- eGFR <30 ml/min per 1.73 m²
- Diabetes and prediabetes
- Obesity
- Latent infections (e.g., viral hepatitis and tuberculosis)
- Active peptic ulceration
- Uncontrolled psychiatric illness
- Osteoporosis
- Cataracts

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Intensive Supportive Care plus Immunosuppression in IgA Nephropathy

Thomas Rauen, M.D., Frank Eitner, M.D., Christina Fitzner, M.Sc.,
Claudia Sommerer, M.D., Martin Zeier, M.D., Britta Otte, M.D., Ulf Panzer, M.D.,
Harm Peters, M.D., Urs Benck, M.D., Peter R. Mertens, M.D.,
Uwe Kuhlmann, M.D., Oliver Witzke, M.D., Oliver Gross, M.D.,
Volker Vielhauer, M.D., Johannes F.E. Mann, M.D., Ralf-Dieter Hilgers, Ph.D.,
and Jürgen Floege, M.D., for the STOP-IgAN Investigators*

Research

JAMA | Original Investigation

Effect of Oral Methylprednisolone on Clinical Outcomes in Patients With IgA Nephropathy

The TESTING Randomized Clinical Trial

Jicheng Lv, MD; Hong Zhang, PhD; Muh Geot Wong, PhD; Meg J. Jardine, PhD; Michelle Hladunewich, MD; Vivek Jha, MD; Helen Monaghan, PhD; Minghui Zhao, MD; Sean Barbour, MD; Heather Reich, MD; Daniel Catran, MD; Richard Glasscock, MD; Adeera Levin, FRCPC; David Wheeler, FRCP; Mark Woodward, PhD; Laurent Billot, MSc; Tak Mao Chan, MD; Zhi-Hong Liu, MD; David W. Johnson, MD; Alan Cass, FRACP; John Feehally, MD; Jürgen Floege, MD; Giuseppe Remuzzi, MD; Yangfeng Wu, MD; Rajiv Agarwal, MD; Hai-Yan Wang, MD; Vlado Perkovic, PhD; for the TESTING Study Group

clinical trial

www.kidney-international.org

After ten years of follow-up, no difference between supportive care plus immunosuppression and supportive care alone in IgA nephropathy

see commentary on page 836

Check for updates

Thomas Rauen¹, Stephanie Wied², Christina Fitzner², Frank Eitner^{1,3}, Claudia Sommerer⁴, Martin Zeier⁴, Britta Otte⁵, Ulf Panzer⁶, Clemens Budde⁷, Urs Benck⁸, Peter R. Mertens⁹, Uwe Kuhlmann¹⁰, Oliver Witzke¹¹, Oliver Gross¹², Volker Vielhauer¹³, Johannes F.E. Mann¹⁴, Ralf-Dieter Hilgers² and Jürgen Floege¹; for the STOP-IgAN Investigators¹⁵

¹Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; ²Department of Medical Statistics, RWTH Aachen University, Aachen, Germany; ³Bayer AG, Kidney Diseases Research, Wuppertal, Germany; ⁴Department of Nephrology and Renal Center Heidelberg, University of Heidelberg, Heidelberg, Germany; ⁵Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany; ⁶Division of Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ⁷Department of Nephrology, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany; ⁸Department of Medicine V, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany; ⁹Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany; ¹⁰Medical Clinic III, Central Hospital Bremen, Bremen, Germany; ¹¹Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; ¹²Clinic for Nephrology and Rheumatology, University Medical Center Goettingen, Goettingen, Germany; ¹³Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany; and ¹⁴KH Kidney Center Munich-Schwabing and Department of Medicine IV, University of Erlangen, Erlangen, Germany

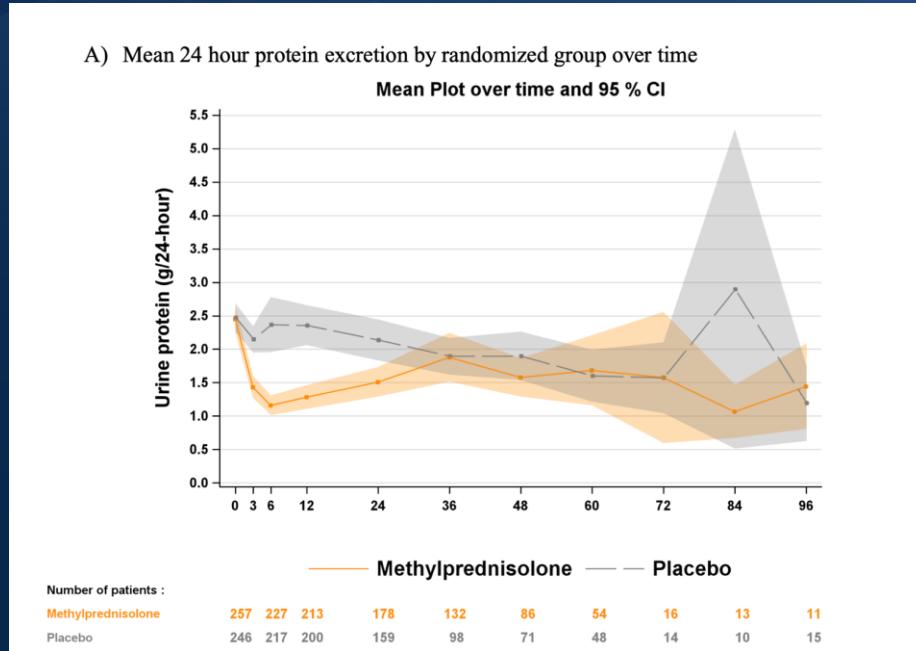
Research

JAMA | Original Investigation

Effect of Oral Methylprednisolone on Decline in Kidney Function or Kidney Failure in Patients With IgA Nephropathy

The TESTING Randomized Clinical Trial

Jicheng Lv, MD; Muh Geot Wong, PhD; Michelle A. Hladunewich, MD; Vivekanand Jha, MD; Lai Seong Hooi, MB, BChir; Helen Monaghan, BSc; Minghui Zhao, MD; Sean Barbour, MD, PhD; Meg J. Jardine, PhD; Heather N. Reich, MD; Daniel Catran, MD; Richard Glasscock, MD; Adeera Levin, MD; David C. Wheeler, MD; Mark Woodward, PhD; Laurent Billot, MSc, MRes; Sandrine Stepien, MSc; Kris Rogers, PhD; Tak Mao Chan, MD; Zhi-Hong Liu, MD; David W. Johnson, MBBS, PhD; Alan Cass, PhD; John Feehally, MD; Jürgen Floege, MD; Giuseppe Remuzzi, MD; Yangfeng Wu, MD; Rajiv Agarwal, MD; Hong Zhang, MD, PhD; Vlado Perkovic, MBBS, PhD; for the TESTING Study Group


Research

JAMA | Original Investigation

Effect of Oral Methylprednisolone on Decline in Kidney Function or Kidney Failure in Patients With IgA Nephropathy

The TESTING Randomized Clinical Trial

Jicheng Lv, MD; Muh Geot Wong, PhD; Michelle A. Hladunewich, MD; Vivekanand Jha, MD; Lai Seong Hooi, MB, BChir; Helen Monaghan, BSc; Minghui Zhao, MD; Sean Barbour, MD, PhD; Meg J. Jardine, PhD; Heather N. Reich, MD; Daniel Catran, MD; Richard Glasscock, MD; Adeera Levin, MD; David C. Wheeler, MD; Mark Woodward, PhD; Laurent Billot, MSc, MRes; Sandrine Stepien, MSc; Kris Rogers, PhD; Tak Mao Chan, MD; Zhi-Hong Liu, MD; David W. Johnson, MBBS, PhD; Alan Cass, PhD; John Feehally, MD; Jürgen Floege, MD; Giuseppe Remuzzi, MD; Yangfeng Wu, MD; Rajiv Agarwal, MD; Hong Zhang, MD, PhD; Vlado Perkovic, MBBS, PhD; for the TESTING Study Group

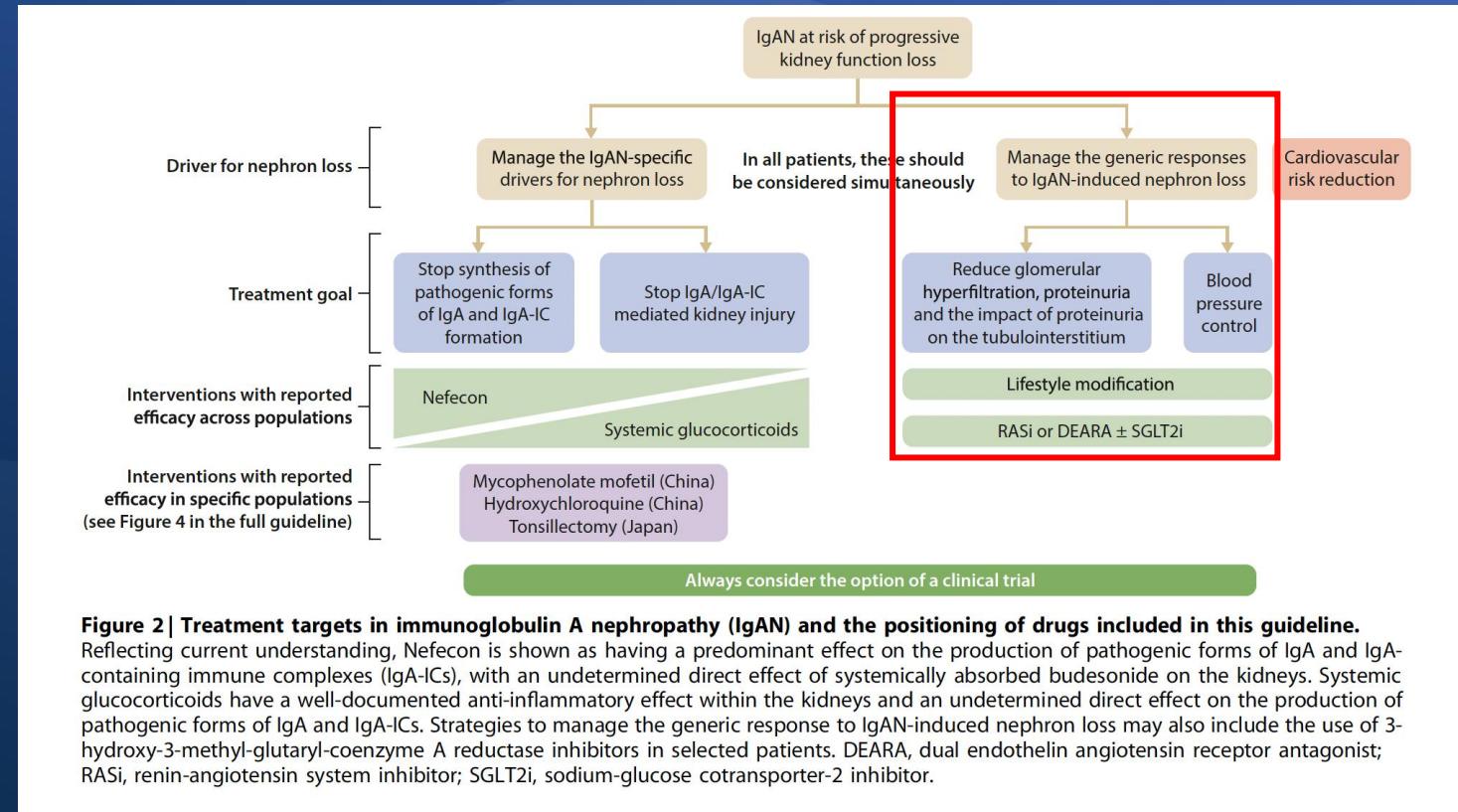
eTable 4 (modified): Serious Adverse events randomized by group overall

	Methylprednisolone (N = 257)	Placebo (N = 246)
Number of SAE	37	8
Number of patients with atleast one SAE (%)		
Hospitalization/prolonged hospitalization	28 (11)	7 (2)
Resulted in death	4 (2)	0 (0)
Life-threatening	4 (2)	0 (0)
Important medical event	2 (0.8)	0 (0)
Persistent/significant disability/incapacity	1 (0.4)	0 (0)
Number of patients reporting the following SAE of special interest per protocol		
Severe infection requiring hospitalization	17 (7)	2 (1)
Pneumocystis Jirovecii pneumonia	4 (2)	0 (0)
Pneumonia or respiratory tract infection	3 (1)	0 (0)
Sepsis	2 (0.8)	1 (0.4)
Urinary tract infection	2 (0.8)	0 (0)
Multiple skin infection	1 (0.4)	0 (0)
Nocardia infection	1 (0.4)	0 (0)
Cryptococcal meningitis	1 (0.4)	0 (0)
Tuberculosis with bacterial infection	1 (0.4)	0 (0)
Perianal abscess	1 (0.4)	0 (0)
Acute febrile illness	0 (0)	1 (0.4)
Other	1 (0.4)	1 (0.4)
Gastrointestinal bleeding requiring hospitalization	3 (1)	1 (0.4)
Clinical evidence fractures or osteoporosis	3 (1)	0 (0)
New onset diabetes mellitus	2 (0.8)	0 (0)

Practice Point 1.4.3.4: Other pharmacologic therapies evaluated in IgAN:

- Multiple agents have been evaluated, often in small studies in restricted populations, and they failed to show a consistent benefit in IgAN (Figure 4).

Agent	Suggested usage	Remarks
Antiplatelet agents	Not recommended	No evidence of efficacy
Anticoagulants	Not recommended	No evidence of efficacy
Azathioprine	Not recommended	No evidence of efficacy as monotherapy or when combined with glucocorticoids
Cyclophosphamide	Not recommended	Unless in the setting of rapidly progressive IgAN
Calcineurin inhibitors	Not recommended	No evidence of efficacy
Rituximab	Not recommended	No evidence of efficacy
Fish oil	Not recommended	Patients who wish to take fish oil should be advised of the dose and formulation used in the published clinical trials that reported efficacy.
Mycophenolate mofetil (MMF)	Chinese patients In those patients in whom glucocorticoids are being considered MMF may be used as a glucocorticoid-sparing agent	Three RCTs have been conducted in China. The first from Hong Kong (n=40, eGFR ~51 ml/min/1.73 m ²) showed a significant reduction in time-averaged proteinuria after MMF (1.5 to 2.0 g/day for 6 months) was added to SC in patients with proteinuria >1 g/d. ¹ An extended 6-year follow-up showed a lesser slope of eGFR decline and lower probability of reaching kidney failure in MMF-treated patients. ² The second from around Jiangsu (n=176, eGFR >90 ml/min/1.73 m ²), showed that MMF with low-dose glucocorticoids (0.4–0.6 mg/kg/d prednisone) for 6 months was non-inferior to standard-dose glucocorticoids (0.8–1.0 mg/kg/d) for the treatment of incident IgAN presenting with proliferative histologic lesions (E or C lesions with or without necrosis) on kidney biopsy and proteinuria >1.0 g/d. ³ There were significantly fewer glucocorticoid-related side effects in the combination-therapy arm. The third from Guangdong (n=170, eGFR 50 ml/min/1.73 m ²), showed that MMF (initially, 1.5 g/d for 12 months, maintained at 0.75–1.0 g/d for at least 6 months) and SC reduced the frequency of the primary composite outcome (doubling of serum creatinine, kidney failure, or death due to kidney or cardiovascular causes, aHR 0.23; 95% CI, 0.09–0.63) and CKD progression (aHR 0.23; 95% CI, 0.1–0.57) compared to SC alone. ⁴ MMF was well tolerated in all the 3 trials.
	Non-Chinese patients There is insufficient evidence to support the use of MMF	In three smaller RCTs of MMF in non-Chinese patients there was no evidence for efficacy of MMF monotherapy: these were from Belgium (n=34, inulin clearance ~71 ml/min/1.73 m ²), ⁵ New York (n=32, eGFR ~39 ml/min/1.73 m ² and required glomerulosclerosis or tubulointerstitial atrophy and fibrosis on kidney biopsy reflecting relatively advanced CKD already) ⁶ and US/Canada (n=44, eGFR >90 ml/min/1.73 m ² , MMF versus omega-3 fatty acid). ⁷
Hydroxychloroquine	Chinese patients In those patients who remain at high risk of progression in spite of optimized supportive care	In a small, short-term RCT conducted in China, hydroxychloroquine introduced to patients with proteinuria of 0.75–3.5 g/d despite optimized ACEi/ARB reduced proteinuria by 48% versus 10% in the placebo group at 6 months. ⁸
	Non-Chinese patients There is insufficient evidence to support the use in those patients	Hydroxychloroquine has not been evaluated in non-Chinese patients.


Figure 4 | Other pharmacologic therapies evaluated in immunoglobulin A nephropathy (IgAN). ¹Tang *et al.*,⁴³ ²Tang *et al.*,⁴⁴ ³Hou *et al.*,³⁸ ⁴Hou *et al.*,⁴⁵ ⁵Maes *et al.*,⁴⁶ ⁶Frisch *et al.*,⁴⁷ ⁷Hogg *et al.*,⁴⁸ ⁸Liu *et al.*,⁴⁹ ACEi, angiotensin-converting enzyme inhibitor; aHR, adjusted hazard ratio; ARB, angiotensin II receptor blocker; CKD, chronic kidney disease; CI, confidence interval; eGFR, estimated glomerular filtration rate; RCT, randomized controlled trial; SC, standard of care.

Practice Point 1.4.3.5: Tonsillectomy in IgAN:

- Tonsillectomy alone or with pulsed glucocorticoids may extend kidney survival and increase the likelihoods of partial or complete remission of hematuria and proteinuria based on multiple, mostly retrospective studies from Japan ([Supplementary Table S5](#)^{50–54}).^{40,50–52,54,55}
- Tonsillectomy alone or with pulsed glucocorticoids is recommended in the Japanese Society of Nephrology guidelines for the treatment of patients with IgAN.
- Tonsillectomy should not be performed as a treatment of IgAN in non-Japanese patients.

1.4.4 Managing the responses to IgAN-induced nephron loss

Practice Point 1.4.4.1: For lifestyle and blood pressure targets for all patients with IgAN, please refer to Practice Point 1.4.2.2.

Recommendation 1.4.4.1: We recommend that all patients with IgAN be treated with an optimized maximally tolerated dose of either an angiotensin-converting enzyme inhibitor (ACEi) or an angiotensin II receptor blocker (ARB) (1B).

Practice Point 1.4.4.2: Factors to consider before using an ACEi or ARB:

- All patients with IgAN should receive an ACEi or ARB at the maximally tolerated dose, except patients with contraindications such as low blood pressure, bilateral renal artery stenosis, or hyperkalemia, especially due to advanced CKD.
- As ACEi or ARB do not mitigate the IgAN-specific drivers of nephron loss, their use should not preclude the concomitant introduction of therapies that target the drivers of IgAN or glomerular inflammation as stated in [Section 1.4.3](#) for patients who will likely benefit from them.

1.4.4 Managing the responses to IgAN-induced nephron loss

Practice Point 1.4.4.1: For lifestyle and blood pressure targets for all patients with IgAN, please refer to Practice Point 1.4.2.2.

Recommendation 1.4.4.1: We recommend that all patients with IgAN be treated with an optimized maximally tolerated dose of either an angiotensin-converting enzyme inhibitor (ACEi) or an angiotensin II receptor blocker (ARB) (1B).

Practice Point 1.4.4.2: Factors to consider before using an ACEi or ARB:

- All patients with IgAN should receive an ACEi or ARB at the maximally tolerated dose, except patients with contraindications such as low blood pressure, bilateral renal artery stenosis, or hyperkalemia, especially due to advanced CKD.
- As ACEi or ARB do not mitigate the IgAN-specific drivers of nephron loss, their use should not preclude the concomitant introduction of therapies that target the drivers of IgAN or glomerular inflammation as stated in [Section 1.4.3](#) for patients who will likely benefit from them.

Recommendation 1.4.4.2: We suggest that patients who are at risk of progressive loss of kidney function with IgAN be treated with sparsentan (2B).

Practice Point 1.4.4.3: Factors to consider before using sparsentan in patients with IgAN:

- Sparsentan is a dual endothelin angiotensin receptor antagonist (DEARA) and should not be prescribed together with a renin-angiotensin system inhibitor (RASI), because sparsentan already combines RASI with an endothelin antagonist in a single molecule.
- Sparsentan's approval status, labeled indication, and availability vary globally.

Articles

Sparsentan in patients with IgA nephropathy: a prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial

Hiddo J. Heerspink, Jai Radhakrishnan, Charles E. Alpers, Jonathan Barrett, Stewart Bieler, Ulysses Diva, Julia Iking, Radko Komers, Alex Mercer, Irene L. Noronha, Michelle N. Rheault, William Rote, Brad Rovin, Howard Trichman, Hernán Trimarchi, Muh Geot Wong, Vlado Perkovic, for the PROTECT Investigators*

Summary

Background Sparsentan is a novel, non-immunosuppressive, single-molecule, dual endothelin and angiotensin receptor antagonist being examined in an ongoing phase 3 trial in adults with IgA nephropathy. We report the prespecified interim analysis of the primary proteinuria efficacy endpoint, and safety.

Methods PROTECT is an international, randomised, double-blind, active-controlled study, being conducted in 134 clinical practice sites in 18 countries. The study examines sparsentan versus irbesartan in adults (aged ≥ 18 years) with biopsy-proven IgA nephropathy and proteinuria of 1.0 g/day or higher despite maximised renin-angiotensin system inhibitor treatment for at least 12 weeks. Participants were randomly assigned in a 1:1 ratio to receive sparsentan 400 mg once daily or irbesartan 300 mg once daily, stratified by estimated glomerular filtration rate at screening ($30 < 60$ mL/min per 1.73 m 2 and ≥ 60 mL/min per 1.73 m 2) and urine protein excretion at screening (>1.75 g/day and >1.75 g/day). The primary efficacy endpoint was change from baseline to week 36 in urine protein-creatinine ratio based on a 24-h urine sample, assessed using mixed model repeated measures. Treatment-emergent adverse events (TEAEs) were safety endpoints. All endpoints were examined in all participants who received at least one dose of randomised treatment. The study is ongoing and is registered with ClinicalTrials.gov, NCT03762850.

Findings Between Dec 20, 2018, and May 26, 2021, 404 participants were randomly assigned to sparsentan (n=202) or irbesartan (n=202) and received treatment. At week 36, the geometric least squares mean percent change from baseline in urine protein-creatinine ratio was statistically significantly greater in the sparsentan group (-49.8% than the irbesartan group (-15.1%), resulting in a between-group relative reduction of 41% (least squares mean ratio=0.59; 95% CI 0.51–0.69; $p<0.0001$). TEAEs with sparsentan were similar to irbesartan. There were no cases of severe oedema, heart failure, hepatotoxicity, or oedema-related discontinuations. Bodyweight changes from baseline were not different between the sparsentan and irbesartan groups.

Interpretation Once-daily treatment with sparsentan produced meaningful reduction in proteinuria compared with irbesartan in adults with IgA nephropathy. Safety of sparsentan was similar to irbesartan. Future analyses after completion of the 2-year double-blind period will show whether these beneficial effects translate into a long-term nephroprotective potential of sparsentan.

Funding Travers Therapeutics.

Copyright © 2023 Published by Elsevier Ltd. All rights reserved.

Introduction

Immunoglobulin A (IgA) nephropathy is the most common primary glomerulonephritis and an important cause of kidney failure.^{1,2} Proteinuria has been consistently shown to be a risk factor for progressive kidney function loss in patients with IgA nephropathy,³ and remission of proteinuria is associated with improved kidney outcomes.⁴ Despite the risk of progressive kidney disease and kidney failure, few therapeutic options are available. The Kidney Disease Improving Global Outcomes (KDIGO) guideline recommends the use of renin-angiotensin system (RAS) inhibitors in patients with proteinuria more than 0.5 g/day.⁴ Following 3 months of RAS inhibitor treatment, patients with proteinuria of 1 g/day or higher have a greater risk of disease progression, and additional treatment is recommended.

The use of RAS inhibitors as standard of care in IgA nephropathy is based on their well established pleiotropic nephroprotective actions in a variety of kidney diseases and indicates a contribution of its main effector, angiotensin II, in the pathophysiology of IgA nephropathy.⁵

More recently, advances in our understanding of the pathogenesis of IgA nephropathy show that endothelin-1 (ET-1) contributes to the pathophysiology of IgA nephropathy via activation of ET_A receptors, leading to a variety of effects including vasoconstriction, podocyte dysfunction, tubular injury, inflammation, and fibrosis.⁶

Published Online
April 1, 2023
[https://doi.org/10.1016/S0140-6736\(23\)00569-X](https://doi.org/10.1016/S0140-6736(23)00569-X)

See Online/Comment
[https://doi.org/10.1016/S0140-6736\(23\)00650-X](https://doi.org/10.1016/S0140-6736(23)00650-X)

*PROTECT Investigators listed in the appendix (pp 2–5)

Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, Netherlands

(Prof J.J. Heerspink PhD); The

George Institute for Global

Health, University of New

South Wales, Sydney, NSW,

Australia (Prof H.J. Heerspink,

Prof V. Perkovic, MD)

Department of Division of

Nephrology, Columbia

University, New York, NY, USA

(Prof J. Radhakrishnan, MD)

Department of Laboratory

Medicine and Pathology,

University of Washington,

Seattle, WA, USA

(Prof C.E. Alpers, MD)

Department of Cardiovascular

Sciences, University of

Leicester General Hospital,

Leicester, UK

(Prof J. Barrett PhD); Travers

Therapeutics, San Diego, CA,

USA (S. Bieler, PhD); Dose

MD);

W. Rote PhD); JAMCO Pharma

Consulting, Stockholm,

Sweden (A. Mercer, MD)

Laboratory of Cellular, Genetic,

and Molecular Nephrology,

Division of Nephrology,

University of São Paulo School

of Medicine, São Paulo, Brazil

(Prof I. Noronha, MD); Division

of Pediatric Nephrology,

University of Minnesota

Medical School, Minneapolis,

MINN, USA (M.N. Rheault, MD)

Division of Nephrology, Ohio

State University, Columbus,

OH, USA (Prof B. Rovin, MD); Division

of Nephrology, Department of

Pediatrics, University of

Michigan, Ann Arbor, MI, USA

Efficacy and safety of sparsentan versus irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial

Brad H. Rovin*, Jonathan Barrett*, Hiddo J. Heerspink, Charles E. Alpers, Stewart Bieler, Dong-Wan Choe, Ulysses A. Diva, Jürgen Floege, Ilenio Gesualdo, Julia Iking, Donald P. Kohan, Radko Komers, Laura Ann Koenig, Richard J. Leyte, Bart Maes, Robert Mialeki, Alex Mercer, Irene L. Noronha, Se Won Oh, Chen Au Peh, Manuel Praga, Priscilla Preciado, Jai Radhakrishnan, Michelle N. Rheault, William F. Rote, Synehy C. W. Tang, Vladimir Tesar, Howard Trichman, Hernán Trimarchi, James A. Tumlin, Muh Geot Wong, Vlado Perkovic, on behalf of the DUPRO steering committee and PROTECT Investigators*

Summary

Background Sparsentan, a novel, non-immunosuppressive, single-molecule, dual endothelin angiotensin receptor antagonist, significantly reduced proteinuria versus irbesartan, an angiotensin II receptor blocker, at 36 weeks (primary endpoint) in patients with immunoglobulin A nephropathy in the phase 3 PROTECT trial's previously reported interim analysis. Here, we report kidney function and outcomes over 110 weeks from the double-blind final analysis.

Methods PROTECT, a double-blind, randomised, active-controlled, phase 3 study, was done across 134 clinical practice sites in 18 countries throughout the Americas, Asia, and Europe. Patients aged 18 years or older with biopsy-proven primary IgA nephropathy and proteinuria of at least 1.0 g per day despite maximised renin-angiotensin system inhibition for at least 12 weeks were randomly assigned (1:1) to receive sparsentan (target dose 400 mg oral sparsentan once daily) or irbesartan (target dose 300 mg oral irbesartan once daily) based on a permuted-block randomisation method. The primary endpoint was proteinuria change between treatment groups at 36 weeks. Secondary endpoints included rate of change (slope) of the estimated glomerular filtration rate (eGFR), changes in proteinuria, a composite of kidney failure (confirmed 40% eGFR reduction, end-stage kidney disease, or all-cause mortality), and safety and tolerability up to 110 weeks from randomisation. Secondary efficacy outcomes were assessed in the full analysis set and safety was assessed in the safety set, both of which were defined as all patients who were randomly assigned and received at least one dose of randomly assigned study drug. This trial is registered with ClinicalTrials.gov, NCT03762850.

Findings Between Dec 20, 2018, and May 26, 2021, 203 patients were randomly assigned to the sparsentan group and 203 to the irbesartan group. One patient from each group did not receive the study drug and was excluded from the efficacy and safety analyses (282 [70%] of 404 included patients were male and 272 [67%] were White). Patients in the sparsentan group had a slower rate of eGFR decline than those in the irbesartan group, eGFR chronic 2-year slope (weeks 6–110) was -2.7 mL/min per 1.73 m 2 per year versus -3.8 mL/min per 1.73 m 2 per year (difference 1.1 mL/min per 1.73 m 2 per year, 95% CI 0.1 to 2.1; $p=0.037$); total 2-year slope (day 1–week 110) was -2.9 mL/min per 1.73 m 2 per year versus -3.9 mL/min per 1.73 m 2 per year (difference 1.0 mL/min per 1.73 m 2 per year, 95% CI 0.1 to 2.1; $p=0.037$); total 2-year slope (day 1–week 110) was -2.9 mL/min per 1.73 m 2 per year versus -3.9 mL/min per 1.73 m 2 per year (difference 1.0 mL/min per 1.73 m 2 per year, 95% CI 0.1 to 2.1; $p=0.037$). The significant reduction in proteinuria at 36 weeks with sparsentan was maintained throughout the study period; at 110 weeks, proteinuria, as determined by the change from baseline in urine protein-to-creatinine ratio, was 40% lower in the sparsentan group than in the irbesartan group (-42.8% , 95% CI -49.8% to -35.0% , with sparsentan versus -44.4% , -4.4% , -15.8% to -8.7% with irbesartan; geometric least-squares mean ratio 0.60 , 95% CI 0.50 to 0.72). The composite kidney failure endpoint was reached by 18 (9%) of 202 patients in the sparsentan group versus 26 (13%) of 202 patients in the irbesartan group (relative risk 0.7 , 95% CI 0.4 to 1.2). Treatment-emergent adverse events were well balanced between sparsentan and irbesartan, with no new safety signals.

Interpretation Over 110 weeks, treatment with sparsentan versus maximally titrated irbesartan in patients with IgA nephropathy resulted in significant reductions in proteinuria and preservation of kidney function.

Funding Travers Therapeutics.

Copyright © 2023 Elsevier Ltd. All rights reserved.

Introduction

Immunoglobulin A (IgA) nephropathy is the most common primary glomerulonephritis and is associated with significant lifetime risk of kidney failure.¹ IgA nephropathy is usually found in

Published Online
November 3, 2023
[https://doi.org/10.1016/S0140-6736\(23\)03027-4](https://doi.org/10.1016/S0140-6736(23)03027-4)

*Contributed equally

†PROTECT Investigators listed in the appendix (pp 2–5)

Division of Nephrology, Ohio

State University, Wexner

Medical Center, Columbus, OH, USA (Prof B. Rovin, MD);

Department of Cardiovascular

Sciences, University of

Leicester General Hospital,

Leicester, UK

(Prof J.J. Heerspink PhD); The

George Institute for Global

Health (Prof H.J. Heerspink PhD);

Faculty of Medicine and Health

(Prof F. Cesario PhD), University of

New South Wales, Sydney, NSW, Australia (Prof C.E. Alpers, MD); Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA (Prof C. Alpers, MD); Travers

Therapeutics, San Diego, CA, USA (S. Bieler, PhD); I.U. Dua, MD; J. King, MD; R. Kornes, MD; P. Pericak, MD; W. Rote, PhD; Department of Internal

Medicine, Seoul Red Cross

Hospital, Seoul, South Korea

Division of Nephrology, Division of

Nephrology, RWTH Aachen

University Hospital, Aachen, Germany (Prof J. Floege, MD);

Nephrology, Dialysis and

Transplantation Unit,

University of Basel Altona, Basel, Switzerland (Prof I. Gesualdo, MD);

Division of Nephrology, School

of Medicine, University of Utah

Health, Salt Lake City, UT, USA

(Dr Kahan, MD); Colorado

Region Care, Englewood, CO, USA

(Dr Kahan, MD); Division of

Nephrology, Stanford

University Medical Center,

Stanford, CA, USA

1

Articles

Efficacy and safety of sparsentan versus irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial

Summary

Background Sparsentan, a novel, non-immunosuppressive, single-molecule, dual endothelin angiotensin receptor antagonist, significantly reduced proteinuria versus irbesartan, an angiotensin II receptor blocker, at 36 weeks (primary endpoint) in patients with immunoglobulin A nephropathy in the phase 3 PROTECT trial's previously reported interim analysis. Here, we report kidney function and outcomes over 110 weeks from the double-blind final analysis.

Methods PROTECT, a double-blind, randomised, active-controlled, phase 3 study, was done across 134 clinical practice sites in 18 countries throughout the Americas, Asia, and Europe. Patients aged 18 years or older with biopsy-proven primary IgA nephropathy and proteinuria of at least 1.0 g per day despite maximised renin-angiotensin system inhibition for at least 12 weeks were randomly assigned (1:1) to receive sparsentan (target dose 400 mg oral sparsentan once daily) or irbesartan (target dose 300 mg oral irbesartan once daily) based on a permuted-block randomisation method. The primary endpoint was proteinuria change between treatment groups at 36 weeks. Secondary endpoints included rate of change (slope) of the estimated glomerular filtration rate (eGFR), change in proteinuria, a composite of kidney failure (confirmed 40% eGFR reduction, end-stage kidney disease, or all-cause mortality), and safety and tolerability up to 110 weeks from randomisation. Secondary efficacy outcomes were assessed in the full analysis set and safety was assessed in the safety set, both of which were defined as all patients who were randomly assigned and received at least one dose of randomly assigned study drug. This trial is registered with ClinicalTrials.gov, NCT03762850.

Findings Between Dec 20, 2018, and May 26, 2021, 203 patients were randomly assigned to the sparsentan group and 203 to the irbesartan group. One patient from each group did not receive the study drug and was excluded from the efficacy and safety analyses (282 [70%] of 404 included patients were male and 272 [67%] were White). Patients in the sparsentan group had a slower rate of eGFR decline than those in the irbesartan group, eGFR chronic 2-year slope (weeks 6–110) was $-2.7 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$ versus $-3.8 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$ (difference $-1.1 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$, 95% CI 0.1 to $-2.9 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$, $p=0.037$); total 2-year slope (day 1–week 110) was $-2.9 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$ versus $-3.9 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$ (difference $-1.0 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$, 95% CI 0.1 to $-1.9 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$, $p=0.038$). The significant reduction in proteinuria at 36 weeks with sparsentan was maintained throughout the study period; at 110 weeks, proteinuria, as determined by the change from baseline in urine protein-to-creatinine ratio, was 4.4% to 8.7% with irbesartan (geometric least-squares mean ratio 0.60, 95% CI 0.50 to 0.72). The composite kidney failure endpoint was reached by 18 (9%) of 202 patients in the sparsentan group versus 26 (13%) of 202 patients in the irbesartan group (relative risk 0.7, 95% CI 0.4 to 1.2). Treatment-emergent adverse events were well balanced between sparsentan and irbesartan, with no new safety signals.

Interpretation Over 110 weeks, treatment with sparsentan versus maximally titrated irbesartan in patients with IgA nephropathy resulted in significant reductions in proteinuria and preservation of kidney function.

Funding Trave Therapeutics.

Copyright © 2023 Elsevier Ltd. All rights reserved.

Introduction

Immunoglobulin A nephropathy is the most common primary glomerular disease worldwide¹ and is associated with a significant lifetime risk of kidney failure.² Current treatment options are limited,³ and it is only since December, 2021, that a small number of approved treatments have become available in Europe and the USA.^{4,5} IgA nephropathy is usually found in

Published online November 3, 2023 [https://doi.org/10.1016/S0140-6736\(23\)02302-4](https://doi.org/10.1016/S0140-6736(23)02302-4)

Articles

Table 2: Change in eGFR

	Sparsentan group (n=202)	Irbesartan group (n=202)	Between-group difference (95% CI)	p value
Key secondary efficacy endpoints*				
Chronic slope from week 0 to week 110, mL/min per 1.73 m ² per year	-2.7 (-3.4 to -2.0)	-3.8 (-4.6 to -3.1)	1.1 (0.1 to 2.1)	0.02
Total slope from day 1 to week 110, mL/min per 1.73 m ² per year	-2.9 (-3.6 to -2.2)	-3.9 (-4.6 to -3.1)	1.0 (-0.03 to 1.94)	0.058
Other secondary efficacy endpoint†				
Absolute change from baseline to week 110, mL/min per 1.73 m ²	-5.8 (-7.4 to -4.2)	-9.5 (-11.2 to -7.8)	3.7 (1.5 to 6.0)	...
Prespecified exploratory endpoint‡				
Absolute change from baseline to week 110, mL/min per 1.73 m ²	-6.1 (-7.7 to -4.5)	-9.0 (-10.7 to -7.2)	2.9 (0.5 to 5.3)	...

Data are least-squares mean change (95% CI) in eGFR unless otherwise stated. eGFR=estimated glomerular filtration rate. *Assessed in the full analysis set. †Assessed in patients in the full analysis set who completed the study treatment.

Figure 2: Least-squares mean change in eGFR up to week 110

This figure is a line graph showing the least-squares mean change in eGFR (mL/min per 1.73 m²) over time (weeks) from week 0 to week 110. The y-axis ranges from -12 to 2, and the x-axis ranges from 0 to 110. Two groups are compared: the Sparsentan group (red line with circles) and the Irbesartan group (blue line with squares). Both groups show a negative slope, indicating a decrease in eGFR over time. The Irbesartan group starts at a higher baseline (around -1.5 mL/min per 1.73 m²) and shows a steeper decline compared to the Sparsentan group, which starts at a lower baseline (around -2.5 mL/min per 1.73 m²) and shows a shallower decline. A horizontal dashed line at 0 represents the baseline. A vertical dashed line at week 36 marks the end of the double-blind period, and another at week 110 marks the end of treatment. Error bars represent 95% CIs.

Table 2: Change in eGFR

	Sparsentan group (n=202)	Irbesartan group (n=202)	Between-group difference (95% CI)	p value
Key secondary efficacy endpoints*				
Chronic slope from week 0 to week 110, mL/min per 1.73 m ² per year	-2.7 (-3.4 to -2.0)	-3.8 (-4.6 to -3.1)	1.1 (0.1 to 2.1)	0.02
Total slope from day 1 to week 110, mL/min per 1.73 m ² per year	-2.9 (-3.6 to -2.2)	-3.9 (-4.6 to -3.1)	1.0 (-0.03 to 1.94)	0.058
Other secondary efficacy endpoint†				
Absolute change from baseline to week 110, mL/min per 1.73 m ²	-5.8 (-7.4 to -4.2)	-9.5 (-11.2 to -7.8)	3.7 (1.5 to 6.0)	...
Prespecified exploratory endpoint‡				
Absolute change from baseline to week 110, mL/min per 1.73 m ²	-6.1 (-7.7 to -4.5)	-9.0 (-10.7 to -7.2)	2.9 (0.5 to 5.3)	...

Data are least-squares mean change (95% CI) in eGFR unless otherwise stated. eGFR=estimated glomerular filtration rate. *Assessed in the full analysis set. †Assessed in patients in the full analysis set who completed the study treatment.

Articles

A: Chronic eGFR slopes

Using on-treatment assessments with multiple imputation, full analysis set (key secondary analysis)

Including assessments after initiation of rescue immunosuppressive therapy for kidney disease, full analysis set

Including local laboratory assessments, full analysis set

Using on-treatment assessments with multiple imputation, per protocol set

B: Total eGFR slopes

Using on-treatment assessments with multiple imputation, full analysis set (key secondary analysis)

Including assessments after initiation of rescue immunosuppressive therapy for kidney disease, full analysis set

Including local laboratory assessments, full analysis set

Using on-treatment assessments with multiple imputation, per protocol set

Figure 3: Prespecified sensitivity analyses of rate of change in eGFR up to week 110

(A) Chronic slope between-group difference. (B) Total slope between-group difference. The full analysis set included 202 patients in each group. The mITT approach included 202 patients in each group. The per-protocol set included 188 patients in the sparsentan group and 182 patients in the irbesartan group. eGFR=estimated glomerular filtration rate; mITT=modified intention to treat.

frequently with sparsentan than with irbesartan (2·5 percentage points) included dizziness (30 [15%] vs 13 [6%] patients) and hypotension (26 [13%] vs eight [4%] patients). Serious treatment-emergent adverse events were reported in 75 (37%) patients in the sparsentan group, and treatment-emergent adverse events led to treatment discontinuation in 71 (10%) and 18 (9%) patients, respectively. Treatment-emergent adverse events of acute kidney injury occurred in 12 (6%) patients in the sparsentan group and five (2%) patients in the irbesartan group. Four (2% [one person]) were serious and three (1%) were led to treatment discontinuation.

Treatment-emergent adverse events of COVID-19 were reported in 53 (26%) of 202 patients in the sparsentan group and 46 (23%) of 202 patients in the irbesartan group.

Hepatic treatment-emergent adverse events of interest of ALT or AST increasing to more than 3 times the ULN

occurred in five (2%) patients in the sparsentan group and seven (3%) patients in the irbesartan group.

In the sparsentan and irbesartan groups, serious hepatic treatment-emergent adverse events were reported in zero and two (1%) patients. No cases of drug-induced liver injury occurred in either group.

Hypotension-associated treatment-emergent adverse events (hypotension, orthostatic hypotension, and blood pressure systolic or diastolic decreased) were reported in 187 (93%) of 202 patients in the sparsentan group and 177 (88%) of 202 in the irbesartan group (table 4).

Treatment-emergent adverse events that occurred more frequently than sparsentan than with irbesartan (2·5 percentage points) included dizziness (30 [15%] vs 13 [6%] patients)

and hypotension (26 [13%] vs eight [4%] patients).

Serious treatment-emergent adverse events were reported in 75 (37%) patients in the sparsentan group, and treatment-emergent adverse events led to treatment discontinuation in 71 (10%) and 18 (9%) patients, respectively.

Treatment-emergent adverse events of acute kidney injury occurred in 12 (6%) patients in the sparsentan group and five (2%) patients in the irbesartan group. Four (2% [one person]) were serious and three (1%) were led to treatment discontinuation.

Treatment-emergent adverse events of COVID-19 were reported in 53 (26%) of 202 patients in the sparsentan group and 46 (23%) of 202 patients in the irbesartan group.

Hepatic treatment-emergent adverse events of interest of ALT or AST increasing to more than 3 times the ULN

occurred in five (2%) patients in the sparsentan group and seven (3%) patients in the irbesartan group.

In the sparsentan and irbesartan groups, serious hepatic treatment-emergent adverse events were reported in zero and two (1%) patients. No cases of drug-induced liver injury occurred in either group.

Hypotension-associated treatment-emergent adverse events (hypotension, orthostatic hypotension, and blood pressure systolic or diastolic decreased) were reported in 187 (93%) of 202 patients in the sparsentan group and 177 (88%) of 202 in the irbesartan group (table 4).

Treatment-emergent adverse events that occurred more frequently than sparsentan than with irbesartan (2·5 percentage points) included dizziness (30 [15%] vs 13 [6%] patients)

and hypotension (26 [13%] vs eight [4%] patients).

Serious treatment-emergent adverse events were reported in 75 (37%) patients in the sparsentan group, and treatment-emergent adverse events led to treatment discontinuation in 71 (10%) and 18 (9%) patients, respectively.

Treatment-emergent adverse events of acute kidney injury occurred in 12 (6%) patients in the sparsentan group and five (2%) patients in the irbesartan group. Four (2% [one person]) were serious and three (1%) were led to treatment discontinuation.

Treatment-emergent adverse events of COVID-19 were reported in 53 (26%) of 202 patients in the sparsentan group and 46 (23%) of 202 patients in the irbesartan group.

Hepatic treatment-emergent adverse events of interest of ALT or AST increasing to more than 3 times the ULN

occurred in five (2%) patients in the sparsentan group and seven (3%) patients in the irbesartan group.

In the sparsentan and irbesartan groups, serious hepatic treatment-emergent adverse events were reported in zero and two (1%) patients. No cases of drug-induced liver injury occurred in either group.

Hypotension-associated treatment-emergent adverse events (hypotension, orthostatic hypotension, and blood pressure systolic or diastolic decreased) were reported in 187 (93%) of 202 patients in the sparsentan group and 177 (88%) of 202 in the irbesartan group (table 4).

Treatment-emergent adverse events that occurred more frequently than sparsentan than with irbesartan (2·5 percentage points) included dizziness (30 [15%] vs 13 [6%] patients)

and hypotension (26 [13%] vs eight [4%] patients).

Serious treatment-emergent adverse events were reported in 75 (37%) patients in the sparsentan group, and treatment-emergent adverse events led to treatment discontinuation in 71 (10%) and 18 (9%) patients, respectively.

Treatment-emergent adverse events of acute kidney injury occurred in 12 (6%) patients in the sparsentan group and five (2%) patients in the irbesartan group. Four (2% [one person]) were serious and three (1%) were led to treatment discontinuation.

Treatment-emergent adverse events of COVID-19 were reported in 53 (26%) of 202 patients in the sparsentan group and 46 (23%) of 202 patients in the irbesartan group.

Hepatic treatment-emergent adverse events of interest of ALT or AST increasing to more than 3 times the ULN

occurred in five (2%) patients in the sparsentan group and seven (3%) patients in the irbesartan group.

In the sparsentan and irbesartan groups, serious hepatic treatment-emergent adverse events were reported in zero and two (1%) patients. No cases of drug-induced liver injury occurred in either group.

Hypotension-associated treatment-emergent adverse events (hypotension, orthostatic hypotension, and blood pressure systolic or diastolic decreased) were reported in 187 (93%) of 202 patients in the sparsentan group and 177 (88%) of 202 in the irbesartan group (table 4).

Treatment-emergent adverse events that occurred more frequently than sparsentan than with irbesartan (2·5 percentage points) included dizziness (30 [15%] vs 13 [6%] patients)

and hypotension (26 [13%] vs eight [4%] patients).

Serious treatment-emergent adverse events were reported in 75 (37%) patients in the sparsentan group, and treatment-emergent adverse events led to treatment discontinuation in 71 (10%) and 18 (9%) patients, respectively.

Treatment-emergent adverse events of acute kidney injury occurred in 12 (6%) patients in the sparsentan group and five (2%) patients in the irbesartan group. Four (2% [one person]) were serious and three (1%) were led to treatment discontinuation.

Treatment-emergent adverse events of COVID-19 were reported in 53 (26%) of 202 patients in the sparsentan group and 46 (23%) of 202 patients in the irbesartan group.

Hepatic treatment-emergent adverse events of interest of ALT or AST increasing to more than 3 times the ULN

occurred in five (2%) patients in the sparsentan group and seven (3%) patients in the irbesartan group.

In the sparsentan and irbesartan groups, serious hepatic treatment-emergent adverse events were reported in zero and two (1%) patients. No cases of drug-induced liver injury occurred in either group.

Hypotension-associated treatment-emergent adverse events (hypotension, orthostatic hypotension, and blood pressure systolic or diastolic decreased) were reported in 187 (93%) of 202 patients in the sparsentan group and 177 (88%) of 202 in the irbesartan group (table 4).

Treatment-emergent adverse events that occurred more frequently than sparsentan than with irbesartan (2·5 percentage points) included dizziness (30 [15%] vs 13 [6%] patients)

and hypotension (26 [13%] vs eight [4%] patients).

Serious treatment-emergent adverse events were reported in 75 (37%) patients in the sparsentan group, and treatment-emergent adverse events led to treatment discontinuation in 71 (10%) and 18 (9%) patients, respectively.

Treatment-emergent adverse events of acute kidney injury occurred in 12 (6%) patients in the sparsentan group and five (2%) patients in the irbesartan group. Four (2% [one person]) were serious and three (1%) were led to treatment discontinuation.

Treatment-emergent adverse events of COVID-19 were reported in 53 (26%) of 202 patients in the sparsentan group and 46 (23%) of 202 patients in the irbesartan group.

Hepatic treatment-emergent adverse events of interest of ALT or AST increasing to more than 3 times the ULN

occurred in five (2%) patients in the sparsentan group and seven (3%) patients in the irbesartan group.

In the sparsentan and irbesartan groups, serious hepatic treatment-emergent adverse events were reported in zero and two (1%) patients. No cases of drug-induced liver injury occurred in either group.

Hypotension-associated treatment-emergent adverse events (hypotension, orthostatic hypotension, and blood pressure systolic or diastolic decreased) were reported in 187 (93%) of 202 patients in the sparsentan group and 177 (88%) of 202 in the irbesartan group (table 4).

Treatment-emergent adverse events that occurred more frequently than sparsentan than with irbesartan (2·5 percentage points) included dizziness (30 [15%] vs 13 [6%] patients)

and hypotension (26 [13%] vs eight [4%] patients).

Serious treatment-emergent adverse events were reported in 75 (37%) patients in the sparsentan group, and treatment-emergent adverse events led to treatment discontinuation in 71 (10%) and 18 (9%) patients, respectively.

Treatment-emergent adverse events of acute kidney injury occurred in 12 (6%) patients in the sparsentan group and five (2%) patients in the irbesartan group. Four (2% [one person]) were serious and three (1%) were led to treatment discontinuation.

Treatment-emergent adverse events of COVID-19 were reported in 53 (26%) of 202 patients in the sparsentan group and 46 (23%) of 202 patients in the irbesartan group.

Hepatic treatment-emergent adverse events of interest of ALT or AST increasing to more than 3 times the ULN

occurred in five (2%) patients in the sparsentan group and seven (3%) patients in the irbesartan group.

In the sparsentan and irbesartan groups, serious hepatic treatment-emergent adverse events were reported in zero and two (1%) patients. No cases of drug-induced liver injury occurred in either group.

Hypotension-associated treatment-emergent adverse events (hypotension, orthostatic hypotension, and blood pressure systolic or diastolic decreased) were reported in 187 (93%) of 202 patients in the sparsentan group and 177 (88%) of 202 in the irbesartan group (table 4).

Treatment-emergent adverse events that occurred more frequently than sparsentan than with irbesartan (2·5 percentage points) included dizziness (30 [15%] vs 13 [6%] patients)

and hypotension (26 [13%] vs eight [4%] patients).

Serious treatment-emergent adverse events were reported in 75 (37%) patients in the sparsentan group, and treatment-emergent adverse events led to treatment discontinuation in 71 (10%) and 18 (9%) patients, respectively.

Treatment-emergent adverse events of acute kidney injury occurred in 12 (6%) patients in the sparsentan group and five (2%) patients in the irbesartan group. Four (2% [one person]) were serious and three (1%) were led to treatment discontinuation.

Treatment-emergent adverse events of COVID-19 were reported in 53 (26%) of 202 patients in the sparsentan group and 46 (23%) of 202 patients in the irbesartan group.

Hepatic treatment-emergent adverse events of interest of ALT or AST increasing to more than 3 times the ULN

occurred in five (2%) patients in the sparsentan group and seven (3%) patients in the irbesartan group.

In the sparsentan and irbesartan groups, serious hepatic treatment-emergent adverse events were reported in zero and two (1%) patients. No cases of drug-induced liver injury occurred in either group.

Hypotension-associated treatment-emergent adverse events (hypotension, orthostatic hypotension, and blood pressure systolic or diastolic decreased) were reported in 187 (93%) of 202 patients in the sparsentan group and 177 (88%) of 202 in the irbesartan group (table 4).

Treatment-emergent adverse events that occurred more frequently than sparsentan than with irbesartan (2·5 percentage points) included dizziness (30 [15%] vs 13 [6%] patients)

and hypotension (26 [13%] vs eight [4%] patients).

Serious treatment-emergent adverse events were reported in 75 (37%) patients in the sparsentan group, and treatment-emergent adverse events led to treatment discontinuation in 71 (10%) and 18 (9%) patients, respectively.

Treatment-emergent adverse events of acute kidney injury occurred in 12 (6%) patients in the sparsentan group and five (2%) patients in the irbesartan group. Four (2% [one person]) were serious and three (1%) were led to treatment discontinuation.

Treatment-emergent adverse events of COVID-19 were reported in 53 (26%) of 202 patients in the sparsentan group and 46 (23%) of 202 patients in the irbesartan group.

Hepatic treatment-emergent adverse events of interest of ALT or AST increasing to more than 3 times the ULN

occurred in five (2%) patients in the sparsentan group and seven (3%) patients in the irbesartan group.

In the sparsentan and irbesartan groups, serious hepatic treatment-emergent adverse events were reported in zero and two (1%) patients. No cases of drug-induced liver injury occurred in either group.

Hypotension-associated treatment-emergent adverse events (hypotension, orthostatic hypotension, and blood pressure systolic or diastolic decreased) were reported in 187 (93%) of 202 patients in the sparsentan group and 177 (88%) of 202 in the irbesartan group (table 4).

Treatment-emergent adverse events that occurred more frequently than sparsentan than with irbesartan (2·5 percentage points) included dizziness (30 [15%] vs 13 [6%] patients)

and hypotension (26 [13%] vs eight [4%] patients).

Serious treatment-emergent adverse events were reported in 75 (37%) patients in the sparsentan group, and treatment-emergent adverse events led to treatment discontinuation in 71 (10%) and 18 (9%) patients, respectively.

Treatment-emergent adverse events of acute kidney injury occurred in 12 (6%) patients in the sparsentan group and five (2%) patients in the irbesartan group. Four (2% [one person]) were serious and three (1%) were led to treatment discontinuation.

<div data-bbox="779 1795 972 18

Articles

Efficacy and safety of sparsentan versus irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial

Brad H Rovin¹, Jonathan Barratt², Hidde J Heerspink³, Charles Alpers⁴, Stewart Bieler⁵, Dong-Wan Choi⁶, Ulysses A Diva⁷, Jürgen Fölsch⁸, Loreto Gesualdo⁹, Julia K Irwig¹⁰, Donald F Kohan¹¹, Radko Komers¹², Laura Ann Koening¹³, Richard Lafayette¹⁴, Bart Maes¹⁵, Robert Malecki¹⁶, Alex Mercer¹⁷, Irene L Naranya¹⁸, Se Won Oh¹⁹, Chen Au Pei²⁰, Marvel Praga²¹, Priscila Preciado²², Jai Radhakrishnan²³, Michelle N Rheault²⁴, William E Rose²⁵, Sydney C W Tang²⁶, Vladimir Tesar²⁷, Howard Trachtman²⁸, Hernan Trinarchi²⁹, James A Tumlin³⁰, Muh Geet Wong³¹, Vlado Perkovic³², on behalf of the DUPRO steering committee and PROTECT Investigators³³

Summary

Background Sparsentan, a novel, non-immunosuppressive, single-molecule, dual endothelin angiotensin receptor antagonist, significantly reduced proteinuria versus irbesartan, an angiotensin II receptor blocker, at 36 weeks (primary endpoint) in patients with immunoglobulin A nephropathy in the phase 3 PROTECT trial's previously reported interim analysis. Here, we report kidney function and outcomes over 110 weeks from the double-blind final analysis.

Methods A double-blind, randomised, active-controlled, phase 3 study, was done across 134 clinical practice sites in 18 countries throughout the Americas, Asia, and Europe. Patients aged 18 years or older with biopsy-proven, primary IgA nephropathy and proteinuria of at least 1.0 g per day despite maximised renin-angiotensin system inhibition for at least 12 weeks were randomly assigned (1:1) to receive sparsentan (target dose 400 mg oral sparsentan once daily) or irbesartan (target dose 300 mg oral irbesartan once daily) based on a permuted-block randomisation method. The primary endpoint was proteinuria change between treatment groups at 36 weeks. Secondary endpoints included rate of change (slope) of the estimated glomerular filtration rate (eGFR), change in proteinuria, a composite of kidney failure (confirmed 40% eGFR reduction, end-stage kidney disease, or all-cause mortality), and safety and tolerability up to 110 weeks from randomisation. Secondary efficacy outcomes were assessed in the full analysis set and safety was assessed in the safety set, both of which were defined as all patients who were randomly assigned and received at least one dose of randomly assigned study drug. This trial is registered with ClinicalTrials.gov, NCT03762850.

Findings Between Dec 20, 2018, and May 26, 2021, 203 patients were randomly assigned to the sparsentan group and 203 to the irbesartan group. One patient from each group did not receive the study drug and was excluded from the efficacy and safety analysis (282 [70%] of 404 included patients were male and 272 [67%] were White). Patients in the sparsentan group had a slower rate of eGFR decline than in the irbesartan group, eGFR chronic 2-year slope (weeks 6–110) was $-2.7 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$ versus $-3.8 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$ (difference $-1.1 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$, 95% CI -0.1 to -2.1 ; $p=0.037$); total 2-year slope (day 1–week 110) was $-2.9 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$ versus $-3.9 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$ (difference $-1.0 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$, 95% CI -0.3 to -1.9 ; $p=0.058$). The significant reduction in proteinuria at 36 weeks with sparsentan was maintained throughout the study period; at 110 weeks, proteinuria, as determined by the change from baseline in urine protein-to-creatinine ratio, was 40% lower in the sparsentan group (-42.8% , 95% CI -49.8 to -35.0), with sparsentan versus -4.4% , -15.8 to 8.7 , with irbesartan, geometric least-squares mean ratio 0.60, 95% CI 0.50 to 0.72. The composite kidney failure endpoint was reached by 18 (9%) of 202 patients in the sparsentan group versus 26 (13%) of 202 patients in the irbesartan group (relative risk 0.7, 95% CI 0.4 to 1.2). Treatment-emergent adverse events were well balanced between sparsentan and irbesartan, with no new safety signals.

Interpretation Over 110 weeks, treatment with sparsentan versus maximally titrated irbesartan in patients with IgA nephropathy resulted in significant reductions in proteinuria and preservation of kidney function.

Funding Traveo Therapeutics.

Copyright © 2023 Elsevier Ltd. All rights reserved.

Introduction

Immunoglobulin A nephropathy is the most common primary glomerular disease worldwide¹ and is associated with a significant lifetime risk of kidney failure.² Current treatment options are limited,³ and it is only since December, 2021, that a small number of approved treatments have become available in Europe and the USA.^{4,5} IgA nephropathy is usually found in

Articles

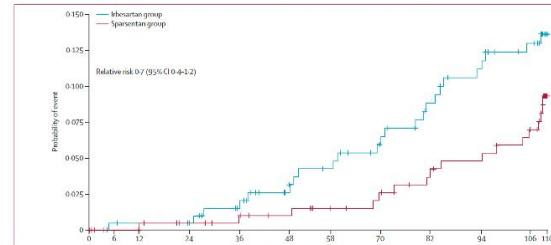


Figure 4: Time to reach the composite kidney failure endpoint of confirmed 40% eGFR reduction, end-stage kidney disease, or all-cause mortality

Vertical bars indicate censored patients. eGFR=estimated glomerular filtration rate.

	Sparsentan group (n=202)	Irbesartan group (n=202)	Geometric least-squares mean ratio (95% CI)
Urine protein-to-creatinine ratio, g/g	-42.8% (-49.8 to -35.0)	-4.4% (-15.8 to 8.7)	0.60 (0.50 to 0.72); 40% reduction
Urine protein excretion, g per day	-45.9% (-53.4 to -39.5)	-5.9% (-17.9 to 7.9)	0.55 (0.47 to 0.68); 44% reduction
Urine albumin-to-creatinine ratio, g/g	-56.0% (-62.1 to -49.1)	-12.3% (-29.1 to -3.3)	0.51 (0.43 to 0.60); 47% reduction
Urine albumin excretion, g per day	-58.8% (-64.7 to -52.0)	-17.9% (-30.1 to -3.6)	0.50 (0.40 to 0.63); 50% reduction

Data are geometric least-squares mean (95% CI) change in proteinuria from baseline to week 110 unless otherwise stated.

Table 3: Change in proteinuria

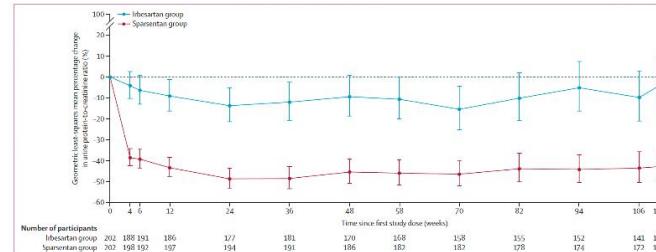


Figure 5: Geometric least-squares mean percentage change from baseline in the urine protein-to-creatinine ratio at each visit up to week 110

Vertical bars indicate 95% CIs.

Articles

Sparsentan group (n=202) Irbesartan group (n=202)

Any treatment-emergent adverse event

Treatment emergent adverse events in ≥5% of patients in ≥1 group	187 (93%)	177 (89%)
COVID-19	53 (26%)	46 (23%)
Hyperkalaemia	32 (16%)	26 (13%)
Peripheral oedema	31 (15%)	24 (12%)
Dizziness	30 (15%)	13 (6%)
Headache	27 (13%)	26 (13%)
Hypertension	26 (13%)	8 (4%)
Upper respiratory tract infection	22 (11%)	28 (14%)
Fatigue	18 (9%)	18 (9%)
Anaemia	17 (8%)	11 (5%)
Naopharyngitis	16 (8%)	9 (4%)
Blood creatinine phosphokinase increased	15 (7%)	10 (5%)
Cough	15 (7%)	7 (3%)
Muscle spasms	14 (7%)	7 (3%)
Arthralgia	14 (7%)	33 (16%)
Proteinuria	13 (6%)	35 (17%)
Back pain	12 (6%)	16 (8%)
Lipase increased	12 (6%)	9 (4%)
Acute kidney injury	12 (6%)	5 (2%)
Gout	11 (5%)	10 (5%)
Purpura	11 (5%)	8 (4%)
Diarrhoea	10 (5%)	19 (9%)
Blood creatinine increased	10 (5%)	14 (7%)
Alanine aminotransferase increased	10 (5%)	8 (4%)
Gastro-oesophageal reflux disease	10 (5%)	8 (4%)
Nausea	10 (5%)	5 (2%)
Myalgia	10 (5%)	4 (2%)
Renal impairment	7 (3%)	12 (6%)
Urinary tract infection	7 (3%)	12 (6%)
Hypertension	7 (3%)	11 (5%)
Pain in extremity	6 (3%)	12 (6%)
Antidiarrhoeal medications ^a	5 (0%)	7 (3%)
Serious treatment-emergent adverse events	75 (37%)	71 (35%)
Serious treatment-emergent adverse events in ≥2 patients in ≥1 group		
COVID-19	47 (21%)	38 (19%)
Glomerulonephritis	6 (3%)	6 (3%)
Acute kidney disease	4 (2%)	4 (2%)
Acute kidney injury	2 (1%)	1 (1%)
Diarrhoea	2 (1%)	1 (1%)
Proteinuria	1 (1%)	1 (1%)
Malaria	2 (1%)	0
Appendicitis	1 (1%)	2 (1%)
Cellulitis	1 (1%)	1 (1%)
Covid-19 pneumonia	1 (1%)	2 (1%)
IgA nephropathy	1 (1%)	2 (1%)
Miscellaneous	1 (1%)	2 (1%)

(Table 4 continues on next page)

events of study drug-related oedema. Change in semi-quantitative oedema from no oedema at baseline to severe oedema occurred in two (1%) patients in the irbesartan group, and to moderate oedema occurred in two (1%) patients in the sparsentan group. Diuretic use (started on or after initial study dose) was reported in 49 (24%) patients in the sparsentan group and 54 (27%) patients in the irbesartan group, and the most frequently used class was thiazides (35 [17%] to 42 [21%]). One patient died in the irbesartan group (cardiorespiratory arrest) and none died in the sparsentan group (table 4). Mean bodyweight was 84.2 kg (SD 20.1) at baseline and 83.8 kg (20.9) at week 110 with sparsentan and 84.7 kg (19.7) at baseline and 85.0 kg (19.0) at week 110 with irbesartan (appendix p 16). Mean potassium concentration remained stable over 110 weeks (appendix p 16).

Discussion

Sparsentan received accelerated regulatory approval for treatment of IgA nephropathy, based on the results of PROTECT, which showed that patients in the sparsentan group had significantly greater reductions in proteinuria versus irbesartan (relative risk of 41%) during 36 weeks of treatment.^{3,4} PROTECT continued until week 114 to determine whether the proteinuria advantage for patients who received sparsentan was durable and to verify that this large decrease in proteinuria translated into superior preservation of kidney function versus those titrated to the maximal approved irbesartan dose. Importantly, patients and investigators remained masked to treatment during this period. Over the course of the double-blind period, the superior reduction of proteinuria in the sparsentan group versus the irbesartan group was maintained with a relative reduction of 40% at 110 weeks, similar to the relative reduction observed at 36 weeks.³ As expected for patients with IgA nephropathy,⁵ the relationship between the magnitude of proteinuria reduction and rate of loss of kidney function was successfully shown in PROTECT. Kidney function decline, assessed as chronic or total eGFR slope up to week 110, was lower with sparsentan versus irbesartan, indicating better preservation of kidney function (chronic slope $-2.7 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$ vs $-3.8 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$; total slope $-2.7 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$ vs $-3.9 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$). The difference in chronic slope ($-1.1 \text{ mL/min per } 1.73 \text{ m}^2 \text{ per year}$) between treatment groups reached significance ($p=0.037$). For the total slope, although the difference between groups was of similar magnitude, favouring sparsentan, significance was narrowly missed ($p=0.058$). Sensitivity analyses for chronic and total slopes, that used a modified intention-to-treat approach (all participants who received study drug) and therefore had somewhat greater statistical power, or that excluded data subsequent to initiation of treatment

1.4.4 Managing the responses to IgAN-induced nephron loss

Practice Point 1.4.4.1: For lifestyle and blood pressure targets for all patients with IgAN, please refer to Practice Point 1.4.2.2.

Recommendation 1.4.4.1: We recommend that all patients with IgAN be treated with an optimized maximally tolerated dose of either an angiotensin-converting enzyme inhibitor (ACEi) or an angiotensin II receptor blocker (ARB) (1B).

Practice Point 1.4.4.2: Factors to consider before using an ACEi or ARB:

- All patients with IgAN should receive an ACEi or ARB at the maximally tolerated dose, except patients with contraindications such as low blood pressure, bilateral renal artery stenosis, or hyperkalemia, especially due to advanced CKD.
- As ACEi or ARB do not mitigate the IgAN-specific drivers of nephron loss, their use should not preclude the concomitant introduction of therapies that target the drivers of IgAN or glomerular inflammation as stated in [Section 1.4.3](#) for patients who will likely benefit from them.

Recommendation 1.4.4.2: We suggest that patients who are at risk of progressive loss of kidney function with IgAN be treated with sparsentan (2B).

Practice Point 1.4.4.3: Factors to consider before using sparsentan in patients with IgAN:

- Sparsentan is a dual endothelin angiotensin receptor antagonist (DEARA) and should not be prescribed together with a renin-angiotensin system inhibitor (RASI), because sparsentan already combines RASI with an endothelin antagonist in a single molecule.
- Sparsentan's approval status, labeled indication, and availability vary globally.

Recommendation 1.4.4.3: We suggest that patients who are at risk of progressive loss of kidney function with IgAN be treated with an SGLT2i (2B).

Practice Point 1.4.4.4: Factors to consider before using an SGLT2i in patients with IgAN:

- There was no requirement for patients with IgAN to be on an optimized maximally tolerated dose of RASI for a minimum of 3 months for inclusion in the Study of Heart and Kidney Protection With Empagliflozin (EMPA-KIDNEY) or the Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Disease (DAPA-CKD) trial.
- Patients with IgAN included in EMPA-KIDNEY and DAPA-CKD likely had long-standing disease, based on their age and eGFR at randomization; therefore, there is uncertainty over the value of SGLT2i, especially in younger patients with IgAN and relatively preserved kidney function (eGFR >60 ml/min per 1.73 m²) (see [Table 2](#)).

ORIGINAL ARTICLE

Dapagliflozin in Patients
with Chronic Kidney Disease

Hiddo J.L. Heerspink, Ph.D., Bergur V. Stefansson, M.D.,
Ricardo Correa-Rotter, M.D., Glenn M. Chertow, M.D., Tom Greene, Ph.D.,
Fan-Fan Hou, M.D., Johannes F.E. Mann, M.D., John J.V. McMurray, M.D.,
Magnus Lindberg, M.Sc., Peter Rossing, M.D., C. David Sjöström, M.D.,
Roberto D. Toto, M.D., Anna-Maria Langkilde, M.D., and David C. Wheeler, M.D.,
for the DAPA-CKD Trial Committees and Investigators*

ABSTRACT

BACKGROUND
Patients with chronic kidney disease have a high risk of adverse kidney and cardiovascular outcomes. The effect of dapagliflozin in patients with chronic kidney disease, with or without type 2 diabetes, is not known.

METHODS
We randomly assigned 4304 participants with an estimated glomerular filtration rate (eGFR) of 25 to 75 ml per minute per 1.73 m² of body-surface area and a urinary albumin-to-creatinine ratio (with albumin measured in milligrams and creatinine measured in grams) of 200 to 5000 to receive dapagliflozin (10 mg once daily) or placebo. The primary outcome was a composite of a sustained decline in the estimated GFR of at least 50%, end-stage kidney disease, or death from renal or cardiovascular causes.

RESULTS
The independent data monitoring committee recommended stopping the trial because of efficacy. Over a median of 2.4 years, a primary outcome event occurred in 197 of 2152 participants (0.9%) in the dapagliflozin group and 312 of 2152 participants (14.5%) in the placebo group (hazard ratio, 0.61; 95% confidence interval [CI], 0.51 to 0.72; $P<0.001$; number needed to treat to prevent one primary outcome event, 19 [95% CI, 15 to 27]). The hazard ratio for the composite of a sustained decline in the estimated GFR of at least 50%, end-stage kidney disease, or death from renal causes was 0.56 (95% CI, 0.45 to 0.68; $P<0.001$), and the hazard ratio for the composite of death from cardiovascular causes or hospitalization for heart failure was 0.71 (95% CI, 0.52 to 0.92; $P=0.009$). Death occurred in 101 participants (4.7%) in the dapagliflozin group and 146 participants (6.8%) in the placebo group (hazard ratio, 0.95; 95% CI, 0.53 to 0.88; $P=0.004$). The effects of dapagliflozin were similar in participants with type 2 diabetes and in those without type 2 diabetes. The known safety profile of dapagliflozin was confirmed.

CONCLUSIONS
Among patients with chronic kidney disease, regardless of the presence or absence of diabetes, the risk of a composite of a sustained decline in the estimated GFR of at least 50%, end-stage kidney disease, or death from renal or cardiovascular causes was significantly lower with dapagliflozin than with placebo. (Funded by AstraZeneca; DAPA-CKD ClinicalTrials.gov number, NCT03036150.)

The authors' affiliations are listed in the Appendix. Address reprint requests to Dr. Heerspink at the Department of Clinical Pharmacology and Pharmacogenomics, University of Groningen, P.O. Box 30.000, 9700 RB Groningen, the Netherlands, or at h.j.lambers.heerspink@umcg.nl.

*A complete list of DAPA-CKD committee members and investigators is provided in the Supplementary Appendix, available at NEJM.org.

This article was published on September 24, 2020, at NEJM.org.

N Engl J Med 2020;383:1436-46.
DOI: 10.1056/NEJMoa2024816
Copyright © 2020 Massachusetts Medical Society.

A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy

David C. Wheeler^{1,2}, Robert D. Toto³, Bergur V. Stefansson⁴, Niels Jongs⁵, Glenn M. Chertow^{6,7}, Tom Greene⁸, Fan Fan Hou⁹, John J.V. McMurray¹⁰, Roberto Pecoits-Filho^{11,12}, Ricardo Correa-Rotter¹³, Peter Rossing^{14,15}, C. David Sjöström¹⁶, Kausik Umanath^{16,17}, Anna Maria Langkilde⁴ and Hiddo J.L. Heerspink¹⁸, for the DAPA-CKD Trial Committees and Investigators

¹Department of Renal Medicine, University College London, London, UK; ²The George Institute for Global Health, Sydney, Australia; ³Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; ⁴late-Stage Development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; ⁵Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; ⁶Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; ⁷Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA; ⁸Study Design and Biostatistics Center, University of Utah Health Sciences, Salt Lake City, Utah, USA; ⁹Division of Nephrology, Nantong Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, Guangzhou, China; ¹⁰Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK; ¹¹Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA; ¹²School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil; ¹³National Medical Science and Nutrition Institute Salvador Zubirán, Mexico City, Mexico; ¹⁴Steno Diabetes Center Copenhagen, Gentofte, Denmark; ¹⁵Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; ¹⁶Division of Nephrology and Hypertension, Henry Ford Hospital, Detroit, Michigan, USA; and ¹⁷Division of Nephrology and Hypertension, Wayne State University, Detroit, Michigan, USA.

Immunoglobulin A (IgA) nephropathy is a common form of glomerulonephritis, which despite use of renin-angiotensin-aldosterone-system blockers and immunosuppressants, often progresses to kidney failure. In the Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Disease trial, dapagliflozin reduced the risk of kidney failure and prolonged survival in participants with chronic kidney disease with and without type 2 diabetes, including those with IgA nephropathy. Participants with estimated glomerular filtration rate (eGFR) 25–75 ml/min/1.73 m² and urinary albumin-to-creatinine ratio 200–5000 mg/g (22.6–565 mg/mol) were randomized to dapagliflozin 10 mg or placebo, as adjunct to standard care. The primary composite endpoint was a sustained decline in eGFR of 50% or more, end-stage kidney disease, or death from a kidney disease-related or cardiovascular cause. Of 270 participants with IgA nephropathy (254 [94%] confirmed by previous biopsy), 137 were randomized to dapagliflozin and 133 to placebo, and followed for median 2.1 years. Overall, mean age was 51.2 years; mean eGFR, 43.8 ml/min/1.73 m²; and median urinary albumin-to-creatinine ratio, 900 mg/g. The primary

outcome occurred in six (4%) participants on dapagliflozin and 20 (15%) on placebo (hazard ratio, 0.29; 95% confidence interval, 0.12, 0.73). Mean rates of eGFR decline with dapagliflozin and placebo were –3.5 and –4.7 ml/min/1.73 m²/year, respectively. Dapagliflozin reduced the urinary albumin-to-creatinine ratio by 26% relative to placebo. Adverse events leading to study drug discontinuation were similar with dapagliflozin and placebo. There were fewer serious adverse events with dapagliflozin, and no new safety findings in this population. Thus, in participants with IgA nephropathy, dapagliflozin reduced the risk of chronic kidney disease progression with a favorable safety profile.

Kidney International (2021) 100, 215–224; <https://doi.org/10.1016/j.kint.2020.02.033>

KEYWORDS: chronic kidney disease; dapagliflozin; DAPA-CKD; IgA nephropathy; randomized controlled clinical trial; sodium-glucose co-transporter inhibitor

Copyright © 2021, International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY license (<https://creativecommons.org/licenses/by/4.0/>).

IgA nephropathy is the most common primary glomerular disease worldwide.¹ Despite advances in our understanding of its pathogenesis, treatment strategies have changed little over the last 2 or 3 decades.² Over a period of 4 to 15 years (mean, 6.1 years), approximately 30% of patients with IgA nephropathy progress to kidney failure, and risk factors for

Correspondence: David C. Wheeler, Department of Renal Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2NS, UK. E-mail: d.wheeler@ucl.ac.uk

Received: 1 February 2021; revised 5 March 2021; accepted 19 March 2021; published online 18 April 2021

RESEARCH SUMMARY

Empagliflozin in Patients with Chronic Kidney Disease

The EMPA-KIDNEY Collaborative Group DOI: 10.1056/NEJMoa2204233

CLINICAL PROBLEM

Sodium-glucose cotransporter 2 inhibitors appear to slow the progression of kidney disease in patients with diabetes and albuminuria. However, most patients with chronic kidney disease do not have diabetes and have low levels of albuminuria, and the effects of empagliflozin therapy in these patients are unclear.

CLINICAL TRIAL

Design: This international, randomized, parallel-group, double-blind, placebo-controlled trial assessed the efficacy of empagliflozin in patients with chronic kidney disease, with or without diabetes and with a range of albuminuria levels.

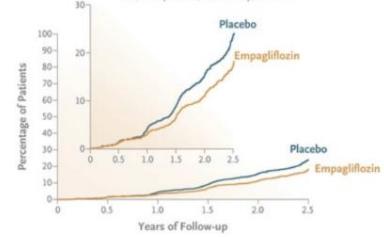
Intervention: 6609 patients with an estimated glomerular filtration rate (eGFR) of 20 to <45 ml per minute per 1.73 m² of body-surface area, or with an eGFR of 45 to <90 ml per minute per 1.73 m² and a urinary albumin-to-creatinine ratio of ≥200 (with albumin measured in milligrams and creatinine measured in grams), were assigned to receive 10 mg of empagliflozin or placebo daily. In this study, 54% of patients had chronic kidney disease without diabetes and 34% had an eGFR of <30 ml per minute per 1.73 m². The primary outcome was the first occurrence of progression of kidney disease or death from cardiovascular causes.

RESULTS

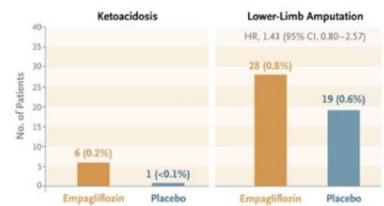
Efficacy: During a median follow-up of 2 years, progression of kidney disease or death from cardiovascular causes occurred in a significantly smaller percentage of patients in the empagliflozin group than in the placebo group.

Safety: Ketoacidosis occurred in numerically more patients in the empagliflozin group than in the placebo group, as did lower-limb amputations. The incidence of serious adverse events overall and according to major organ class was similar in the two groups.

LIMITATIONS AND REMAINING QUESTIONS


■ Fewer cardiovascular events occurred than expected, potentially affecting secondary and tertiary outcome assessments.

■ Further study of patients with a urinary albumin-to-creatinine ratio of less than 300 may be useful.


Links: Full Article | NEJM Quick Take | Editorial

Progression of Kidney Disease or Death from Cardiovascular Causes

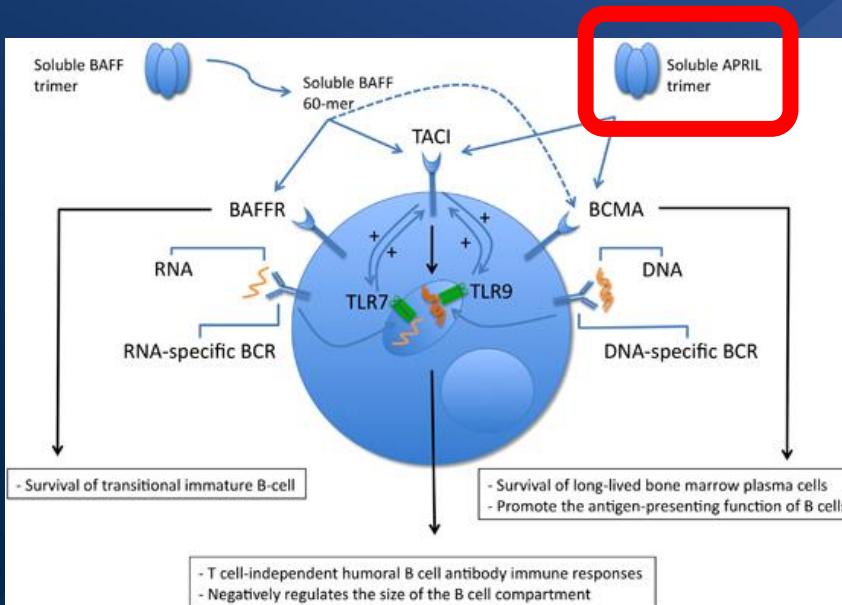
HR, 0.72 (95% CI, 0.64–0.82); $P<0.001$

Safety Outcomes

CONCLUSIONS

Among a wide range of patients with chronic kidney disease who were at risk for progression, empagliflozin therapy was associated with a lower risk of disease progression or death from cardiovascular causes than placebo.

Table 3 | Phase 3 clinical trials open in 2025 evaluating new treatments for IgAN


Drug targets	Drug	Target	Clinical trial Registration number	Status as of July 2024
Drugs targeting the production of pathogenic forms of IgAN	Sibeprenlimab (VIS649)	APRIL	VISIONARY NCT05248646	In follow-up
	Zigakibart (BION-1301)	APRIL	BEYOND NCT05852938	Recruiting
	Atacicept	APRIL/BAFF	ORIGIN3 NCT04716231	Recruiting
	Telitacicept	APRIL/BAFF	NCT05799287	In follow-up
	Povetacicept	APRIL/BAFF	RAINIER NCT06564142	Recruiting
Drugs targeting IgA-containing immune complex-mediated inflammation	Iptacopan (LNP023)	Complement alternative pathway factor B	APPLAUSE-IgAN NCT04578834	In follow-up
	Sefaxersen (RO7434656)	Complement alternative pathway factor B	IMAGINATION NCT05797610	Recruiting
	Ravulizumab	Complement terminal pathway C5	I CAN NCT06291376	Recruiting
Drugs targeting the generic downstream consequences of IgAN-induced nephron loss	Atrasentan	Endothelin A receptor	ALIGN NCT04573478	In follow-up

ALIGN, A Phase 3, Randomized, Double-blind, Placebo-controlled Study of Atrasentan in Patients With IgA Nephropathy at Risk of Progressive Loss of Renal Function; APPLAUSE-IgAN, A Multi-center, Randomized, Double-blind, Placebo-controlled, Parallel Group, Phase III Study to Evaluate the Efficacy and Safety of LNP023 in Primary IgA Nephropathy Patients; APRIL, a proliferation-inducing ligand; BAFF, B cell-activating factor of the tumor necrosis factor family; BEYOND, A Phase 3, Randomized, Double-blind, Placebo-controlled Study of BION-1301 in Adults With IgA Nephropathy; I CAN, A Phase 2, Double-Blind, Randomized, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Ravulizumab in Adult Participants With Proliferative Lupus Nephritis or Immunoglobulin A Nephropathy; IgAN, immunoglobulin A nephropathy; IMAGINATION, A Phase III, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of RO7434656, an Antisense Inhibitor of Complement Factor B, in Patients With Primary IgA Nephropathy at High Risk of Progression; ORIGIN3, A Phase 2b/3, Multi-part, Randomized, Double-Blinded, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Atacicept in Subjects With IgA Nephropathy (IgAN); RAINIER, A Phase 3, Randomized, Double-blind, Placebo-controlled Study of Povetacicept in Adults With Immunoglobulin A Nephropathy; VISIONARY, A Phase 3, Multicenter, Randomized, Double-blind, Placebo-controlled Trial to Evaluate the Efficacy and Safety of Sibeprenlimab Administered Subcutaneously in Subjects With Immunoglobulin A Nephropathy.

Table 3 | Phase 3 clinical trials open in 2025 evaluating new treatments for IgAN

Drug targets	Drug	Target	Clinical trial Registration number	Status as of July 2024
Drugs targeting the production of pathogenic forms of IgAN	Sibeprenlimab (VIS649)	APRIL	VISIONARY NCT05248646	In follow-up
	Zigakibart (BION-1301)	APRIL	BEYOND NCT05852938	Recruiting
	Atacicept	APRIL/BAFF	ORIGIN3 NCT04716231	Recruiting
	Telitacicept	APRIL/BAFF	NCT05799287	In follow-up
	Povetacicept	APRIL/BAFF	RAINIER NCT06564142	Recruiting
Drugs targeting IgA-containing immune complex-mediated inflammation	Iptacopan (LNP023)	Complement alternative pathway factor B	APPLAUSE-IgAN NCT04578834	In follow-up
	Sefaxersen (RO7434656)	Complement alternative pathway factor B	IMAGINATION NCT05797610	Recruiting
	Ravulizumab	Complement terminal pathway C5	I CAN NCT06291376	Recruiting
Drugs targeting the generic downstream consequences of IgAN-induced nephron loss	Atrasentan	Endothelin A receptor	ALIGN NCT04573478	In follow-up

ALIGN, A Phase 3, Randomized, Double-blind, Placebo-controlled Study of Atrasentan in Patients With IgA Nephropathy at Risk of Progressive Loss of Renal Function; APPLAUSE-IgAN, A Multi-center, Randomized, Double-blind, Placebo-controlled, Parallel Group, Phase III Study to Evaluate the Efficacy and Safety of LNP023 in Primary IgA Nephropathy Patients; APRIL, a proliferation-inducing ligand; BAFF, B cell-activating factor of the tumor necrosis factor family; BEYOND, A Phase 3, Randomized, Double-blind, Placebo-controlled Study of BION-1301 in Adults With IgA Nephropathy; I CAN, A Phase 2, Double-Blind, Randomized, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Ravulizumab in Adult Participants With Proliferative Lupus Nephritis or Immunoglobulin A Nephropathy; IgAN, immunoglobulin A nephropathy; IMAGINATION, A Phase III, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of RO7434656, an Antisense Inhibitor of Complement Factor B, in Patients With Primary IgA Nephropathy at High Risk of Progression; ORIGIN3, A Phase 2b/3, Multi-part, Randomized, Double-Blinded, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Atacicept in Subjects With IgA Nephropathy (IgAN); RAINIER, A Phase 3, Randomized, Double-blind, Placebo-controlled Study of Povetacicept in Adults With Immunoglobulin A Nephropathy; VISIONARY, A Phase 3, Multicenter, Randomized, Double-blind, Placebo-controlled Trial to Evaluate the Efficacy and Safety of Sibeprenlimab Administered Subcutaneously in Subjects With Immunoglobulin A Nephropathy.

ACTIVE, NOT RECRUITING ⓘ

Visionary Study: Phase 3 Trial of Sibeprenlimab in Immunoglobulin A Nephropathy (IgAN)

ClinicalTrials.gov ID ⓘ NCT05248646

Sponsor ⓘ Otsuka Pharmaceutical Development & Commercialization, Inc.

Information provided by ⓘ Otsuka Pharmaceutical Development & Commercialization, Inc. (Responsible Party)

Last Update Posted ⓘ 2024-03-26

The NEW ENGLAND JOURNAL of MEDICINE

RESEARCH SUMMARY

A Phase 2 Trial of Sibprenlimab in Patients with IgA Nephropathy

Mathur M et al. DOI: 10.1056/NEJMoa2305635

CLINICAL PROBLEM

Among patients with IgA nephropathy, kidney failure develops in 230% within 20 to 30 years, despite the receipt of optimized standard care. A critical step in the pathogenesis of IgA nephropathy is the production of galactose-deficient IgA1 and resulting autoantibody release. Sibprenlimab is a humanized IgG2 monoclonal antibody that binds to and neutralizes a proliferation-inducing ligand (APRIL), a member of the tumor necrosis factor α superfamily that regulates IgA production.

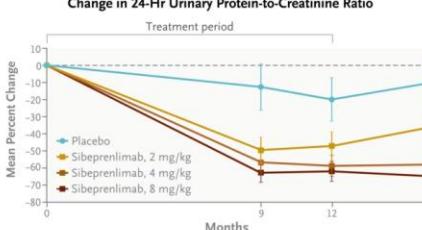
CLINICAL TRIAL

Design: A phase 2, multicenter, double-blind, randomized, placebo-controlled, multiple-dose trial examined the efficacy and safety of sibprenlimab in adults with IgA nephropathy at high risk for disease progression.

Intervention: 155 patients were assigned to receive intravenous sibprenlimab at a dose of 2, 4, or 8 mg per kilogram of body weight or placebo once monthly for 12 months. The primary end point was the change from baseline to month 12 in the log-transformed 24-hour urinary protein-to-creatinine ratio.

RESULTS

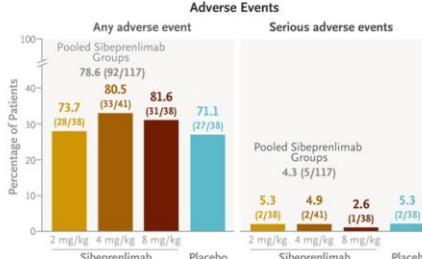
Efficacy: The 24-hour urinary protein-to-creatinine ratio decreased significantly more in the sibprenlimab groups than in the placebo group. The decreases in the sibprenlimab groups were dose-dependent.


Safety: The incidence of adverse events, including serious adverse events, was similar in the sibprenlimab groups and the placebo group.

LIMITATIONS AND REMAINING QUESTIONS

- Evidence of a return to baseline levels of APRIL in the 4 months after discontinuation of sibprenlimab suggests that ongoing treatment will be needed.
- A phase 3 trial has been started to confirm these results in a larger patient population.

Links: Full Article | NEJM Quick Take | Editorial


Change in 24-Hr Urinary Protein-to-Creatinine Ratio

Geometric Mean Percent Reduction in 24-Hr Urinary Protein-to-Creatinine Ratio

End Point	Sibprenlimab 2 mg/kg (N=38)	Sibprenlimab 4 mg/kg (N=41)	Sibprenlimab 8 mg/kg (N=38)	Placebo (N=38)
Month 9	49.6±7.7	56.7±6.2	62.8±5.5	12.7±13.4
Month 12	47.2±8.2	58.8±6.1	62.0±5.7	20.0±12.6
Month 16	36.5±10.6	58.0±6.6	64.6±5.7	10.6±15.0

Adverse Events

CONCLUSIONS

Among patients with IgA nephropathy at high risk for disease progression, 12 months of treatment with sibprenlimab resulted in a significantly greater reduction in proteinuria than placebo.

Copyright © 2023 Massachusetts Medical Society.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Sibprenlimab in IgA Nephropathy — Interim Analysis of a Phase 3 Trial

V. Perkovic,¹ H. Trimarchi,² V. Tesar,³ R. Lafayette,⁴ M.G. Wong,⁵ J. Barratt,⁶ Y. Suzuki,¹ A. Liew,⁸ H. Zhang,⁹ K. Carroll,¹⁰ V. Jha,^{11,12} A. Quevedo,¹⁴ S.H. Han,¹⁵ M. Praga,¹⁶ B. Chacko,¹⁷ M. Sahay,¹⁸ C.K. Cheung,¹⁹ L. Kooienga,¹⁹ M. Walsh,^{20,21} J. Xia,²² C. Fajardo,²² L. Shah,²² J. Hafkin,²² and D.V. Rizk,²³
for the VISIONARY Trial Investigators Group*

ABSTRACT

BACKGROUND

The cytokine A proliferation-inducing ligand (APRIL) is considered a key driver of the pathogenesis of IgA nephropathy. Sibprenlimab, a humanized IgG2 monoclonal antibody, selectively binds to and inhibits APRIL.

METHODS

In this phase 3, multicenter, double-blind, randomized, placebo-controlled trial, we assigned adults with biopsy-confirmed IgA nephropathy in a 1:1 ratio to receive either subcutaneous sibprenlimab at a dose of 400 mg or placebo administered every 4 weeks for 100 weeks. The primary end point for this interim analysis was the 24-hour urinary protein-to-creatinine ratio at 9 months as compared with baseline. The key secondary end point, to be reported at trial completion, is the annualized slope of estimated glomerular filtration rate over 24 months. Other secondary end points included the change in the level of serum immunoglobulin and safety. Exploratory end points included the change in galactose-deficient IgA1 and APRIL concentrations, the spot 24-hour urinary protein-to-creatinine ratio, hematuria, and remission of proteinuria.

RESULTS

A total of 510 patients underwent randomization — 259 to the sibprenlimab group and 251 to the placebo group. The prespecified interim analysis included the first 320 patients (152 who received sibprenlimab and 168 who received placebo) who had the opportunity to complete the 9-month evaluation of the 24-hour urinary protein-to-creatinine ratio. At 9 months, a significant reduction in 24-hour urinary protein-to-creatinine ratio was observed with sibprenlimab (−50.2%) as compared with an increase with placebo (2.1%), corresponding to an adjusted geometric least-squares mean 24-hour urinary protein-to-creatinine ratio that was 51.2% (96.5% confidence interval [CI], 42.9 to 58.2) lower with sibprenlimab than with placebo ($P<0.001$). The levels of APRIL and pathogenic galactose-deficient IgA1 at week 48 were reduced from baseline by 95.8% and 67.1%, respectively, with sibprenlimab. The safety profile appeared to be similar with sibprenlimab and placebo. No deaths were reported, and the incidence of serious adverse events that occurred during the treatment period was 3.5% with sibprenlimab and 4.4% with placebo.

CONCLUSIONS

Sibprenlimab resulted in a significant reduction in proteinuria as compared with placebo in patients with IgA nephropathy. (Funded by Otsuka Pharmaceutical Development and Commercialization. VISIONARY ClinicalTrials.gov number, NCT05248646.)

N ENGL J MED NEJM.ORG

The New England Journal of Medicine is produced by NEJM Group, a division of the Massachusetts Medical Society.
Downloaded from nejm.org at University of Leicester (lei) / England on November 11, 2025.
Copyright © 2025 Massachusetts Medical Society. All rights reserved, including those for text and data mining, AI training, and similar technologies.

1

The NEW ENGLAND JOURNAL of MEDICINE

RESEARCH SUMMARY

A Phase 2 Trial of Sibemprelimab in Patients with IgA Nephropathy

Mathur M et al. DOI: 10.1056/NEJMoa2305635

CLINICAL PROBLEM

Among patients with IgA nephropathy, kidney failure develops in 230% within 20 to 30 years, despite the receipt of optimized standard care. A critical step in the pathogenesis of IgA nephropathy is the production of galactose-deficient IgA1 and resulting autoantibody release. Sibemprelimab is a humanized IgG2 monoclonal antibody that binds to and neutralizes a proliferation-inducing ligand (APRIL), a member of the tumor necrosis factor α superfamily that regulates IgA production.

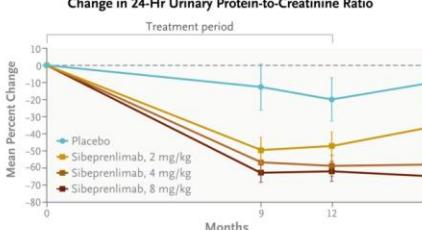
CLINICAL TRIAL

Design: A phase 2, multicenter, double-blind, randomized, placebo-controlled, multiple-dose trial examined the efficacy and safety of sibemprelimab in adults with IgA nephropathy at high risk for disease progression.

Intervention: 155 patients were assigned to receive intravenous sibemprelimab at a dose of 2, 4, or 8 mg per kilogram of body weight or placebo once monthly for 12 months. The primary end point was the change from baseline to month 12 in the log-transformed 24-hour urinary protein-to-creatinine ratio.

RESULTS

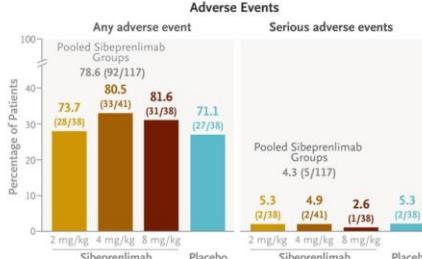
Efficacy: The 24-hour urinary protein-to-creatinine ratio decreased significantly more in the sibemprelimab groups than in the placebo group. The decreases in the sibemprelimab groups were dose-dependent.


Safety: The incidence of adverse events, including serious adverse events, was similar in the sibemprelimab groups and the placebo group.

LIMITATIONS AND REMAINING QUESTIONS

- Evidence of a return to baseline levels of APRIL in the 4 months after discontinuation of sibemprelimab suggests that ongoing treatment will be needed.
- A phase 3 trial has been started to confirm these results in a larger patient population.

Links: Full Article | NEJM Quick Take | Editorial


Change in 24-Hr Urinary Protein-to-Creatinine Ratio

Geometric Mean Percent Reduction in 24-Hr Urinary Protein-to-Creatinine Ratio

End Point	Sibemprelimab 2 mg/kg (N=38)	Sibemprelimab 4 mg/kg (N=41)	Sibemprelimab 8 mg/kg (N=38)	Placebo (N=38)
Month 9	49.6±7.7	56.7±6.2	62.8±5.5	12.7±13.4
Month 12	47.2±8.2	58.8±6.1	62.0±5.7	20.0±12.6
Month 16	36.5±10.6	58.0±6.6	64.6±5.7	10.6±15.0

Adverse Events

CONCLUSIONS

Among patients with IgA nephropathy at high risk for disease progression, 12 months of treatment with sibemprelimab resulted in a significantly greater reduction in proteinuria than placebo.

Copyright © 2023 Massachusetts Medical Society.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Sibemprelimab in IgA Nephropathy — Interim Analysis of a Phase 3 Trial

V. Perkovic,¹ H. Trimarchi,² V. Tesar,³ R. Lafayette,⁴ M.G. Wong,⁵ J. Barratt,⁶ Y. Suzuki,¹ A. Liew,⁸ H. Zhang,⁹ K. Carroll,¹⁰ V. Jha,^{11,12} A. Quevedo,¹⁴ S.H. Han,¹⁵ M. Praga,¹⁶ B. Chacko,¹⁷ M. Sahay,¹⁸ C.K. Cheung,¹⁹ L. Kooienga,¹⁹ M. Walsh,^{20,21} J. Xia,²² C. Fajardo,²² L. Shah,²² J. Hafkin,²² and D.V. Rizk,²³
for the VISIONARY Trial Investigators Group*

ABSTRACT

BACKGROUND

The cytokine A proliferation-inducing ligand (APRIL) is considered a key driver of the pathogenesis of IgA nephropathy. Sibemprelimab, a humanized IgG2 monoclonal antibody, selectively binds to and inhibits APRIL.

METHODS

In this phase 3, multicenter, double-blind, randomized, placebo-controlled trial, we assigned adults with biopsy-confirmed IgA nephropathy in a 1:1 ratio to receive either subcutaneous sibemprelimab at a dose of 400 mg or placebo administered every 4 weeks for 100 weeks. The primary end point for this interim analysis was the 24-hour urinary protein-to-creatinine ratio at 9 months as compared with baseline. The key secondary end point, to be reported at trial completion, is the annualized slope of estimated glomerular filtration rate over 24 months. Other secondary end points included the change in the level of serum immunoglobulin and safety. Exploratory end points included the change in galactose-deficient IgA1 and APRIL concentrations, the spot 24-hour urinary protein-to-creatinine ratio, hematuria, and remission of proteinuria.

RESULTS

A total of 510 patients underwent randomization — 259 to the sibemprelimab group and 251 to the placebo group. The prespecified interim analysis included the first 320 patients (152 who received sibemprelimab and 168 who received placebo) who had the opportunity to complete the 9-month evaluation of the 24-hour urinary protein-to-creatinine ratio. At 9 months, a significant reduction in 24-hour urinary protein-to-creatinine ratio was observed with sibemprelimab (−50.2%) as compared with an increase with placebo (2.1%), corresponding to an adjusted geometric least-squares mean 24-hour urinary protein-to-creatinine ratio that was 51.2% (96.5% confidence interval [CI], 42.9 to 58.2) lower with sibemprelimab than with placebo ($P<0.001$). The levels of APRIL and pathogenic galactose-deficient IgA1 at week 48 were reduced from baseline by 95.8% and 67.1%, respectively, with sibemprelimab. The safety profile appeared to be similar with sibemprelimab and placebo. No deaths were reported, and the incidence of serious adverse events that occurred during the treatment period was 3.5% with sibemprelimab and 4.4% with placebo.

CONCLUSIONS

Sibemprelimab resulted in a significant reduction in proteinuria as compared with placebo in patients with IgA nephropathy. (Funded by Otsuka Pharmaceutical Development and Commercialization. VISIONARY ClinicalTrials.gov number, NCT05248646.)

N ENGL J MED NEJM.ORG

The New England Journal of Medicine is produced by NEJM Group, a division of the Massachusetts Medical Society.
Downloaded from nejm.org at University of Leicester (lei) / England on November 11, 2025.
Copyright © 2025 Massachusetts Medical Society. All rights reserved, including those for text and data mining, AI training, and similar technologies.

1

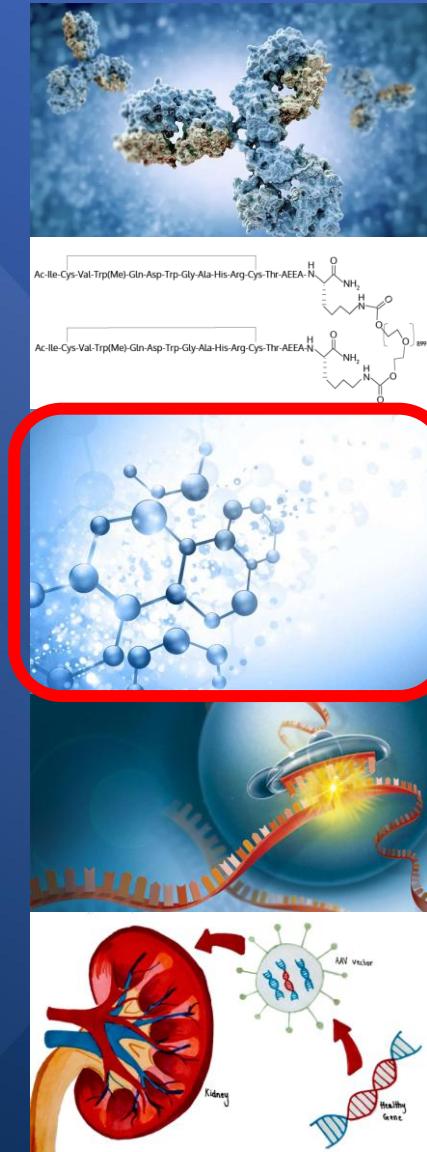
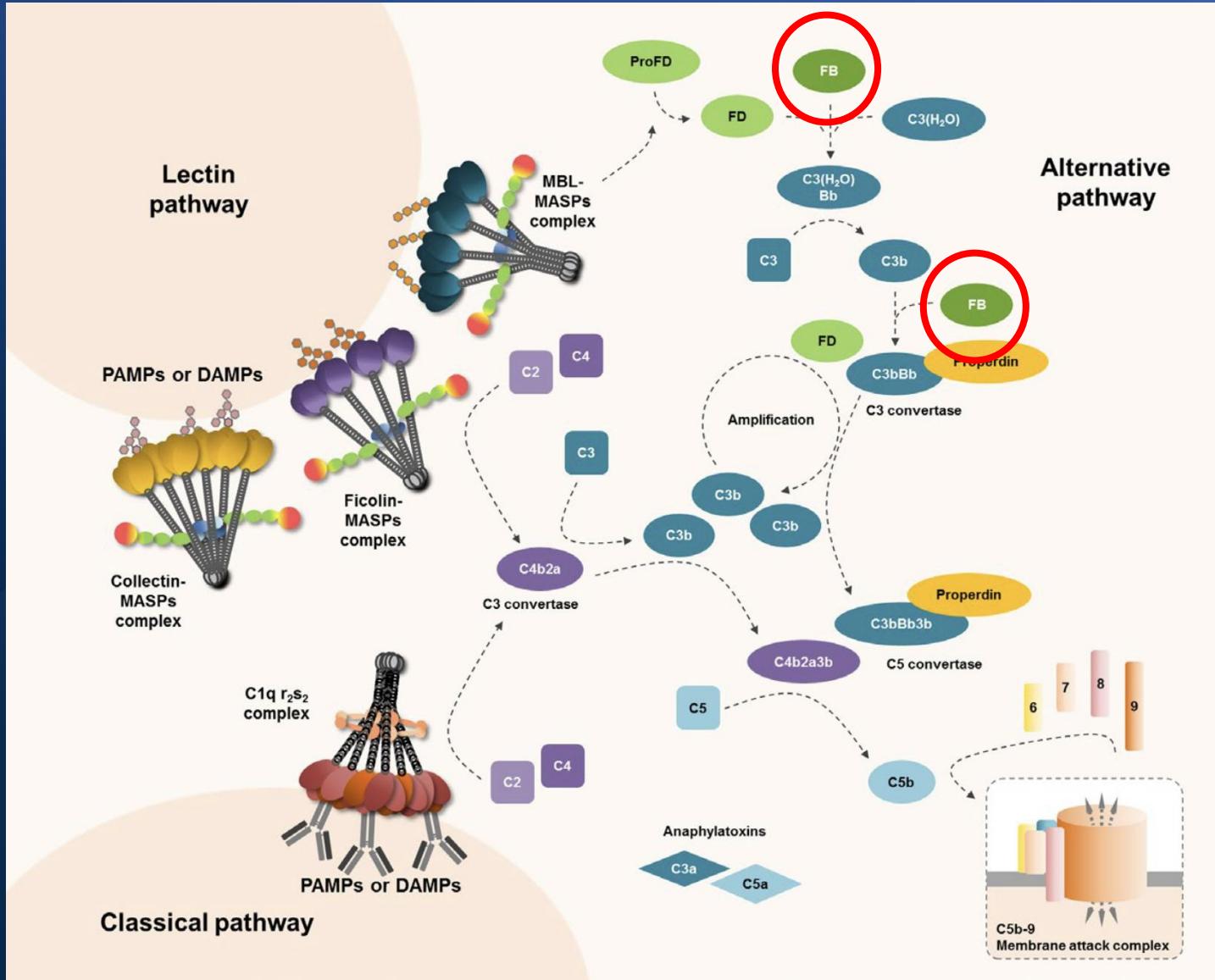
eGFR

Novel Drug Approvals for 2025

What are "Novel" Drugs?

"Novel" drugs are new drugs never before approved or marketed in the U.S. See [Drugs@FDA](#) for information about all of CDER's approved drugs and biological products.

FDA Novel Drug Therapy Approvals for 2025



Search: [Export Excel](#)

No.	Drug Name	Active Ingredient	Approval Date	FDA-approved use on approval date*
39.	Voyxact	sibemprelimab-szsi	11/25/2025	To reduce proteinuria in primary immunoglobulin A nephropathy in adults at risk for disease progression
38.	Hyrnuo	sevabertinib	11/19/2025	To treat locally advanced or metastatic non-squamous non-small cell lung cancer with tumors that have activating HER2 tyrosine kinase domain activating mutations in patients who received a systemic therapy
37.	Redemplo	plozasiran	11/18/2025	To reduce triglycerides in adults with familial chylomicronemia syndrome
36.	Komzifti	ziftomenib	11/13/2025	To treat adults with relapsed or refractory acute myeloid leukemia with a susceptible nucleophosmin 1 mutation who have no satisfactory alternative treatment options
35.	Kygevvi	doxycitine and doxribtimine	11/3/2025	To treat thymidine kinase 2 deficiency in patients who start to show symptoms when they are 12 years old or younger
34.	Lynkuet	elinzanetant	10/24/2025	To treat moderate-to-severe vasomotor symptoms due to menopause
33.	Jascayd	nerandomilast	10/7/2025	To treat idiopathic pulmonary fibrosis
32.	Rhapsido	remibrutinib	9/30/2025	To treat chronic spontaneous urticaria in adults who remain symptomatic despite H1 antihistamine treatment
31.	Palsonify	paltusotine	9/25/2025	To treat acromegaly in adults who had an inadequate response to surgery and/or for whom surgery is not an option
30.	Inluriyo	imlunestrant	9/25/2025	To treat estrogen receptor-positive, human epidermal growth factor receptor 2-negative, estrogen receptor-1-mutated advanced or metastatic breast cancer with disease progression following at least one line of endocrine therapy

Table 3 | Phase 3 clinical trials open in 2025 evaluating new treatments for IgAN

Drug targets	Drug	Target	Clinical trial Registration number	Status as of July 2024
Drugs targeting the production of pathogenic forms of IgAN	Sibeprenlimab (VIS649)	APRIL	VISIONARY NCT05248646	In follow-up
	Zigakibart (BION-1301)	APRIL	BEYOND NCT05852938	Recruiting
	Atacicept	APRIL/BAFF	ORIGIN3 NCT04716231	Recruiting
	Telitacicept	APRIL/BAFF	NCT05799287	In follow-up
	Povetacicept	APRIL/BAFF	RAINIER NCT06564142	Recruiting
Drugs targeting IgA-containing immune complex-mediated inflammation	Iptacopan (LNP023)	Complement alternative pathway factor B	APPLAUSE-IgAN NCT04578834	In follow-up
	Sefaxersen (RO7434656)	Complement alternative pathway factor B	IMAGINATION NCT05797610	Recruiting
	Ravulizumab	Complement terminal pathway C5	I CAN NCT06291376	Recruiting
Drugs targeting the generic downstream consequences of IgAN-induced nephron loss	Atrasentan	Endothelin A receptor	ALIGN NCT04573478	In follow-up

ALIGN, A Phase 3, Randomized, Double-blind, Placebo-controlled Study of Atrasentan in Patients With IgA Nephropathy at Risk of Progressive Loss of Renal Function; APPLAUSE-IgAN, A Multi-center, Randomized, Double-blind, Placebo-controlled, Parallel Group, Phase III Study to Evaluate the Efficacy and Safety of LNP023 in Primary IgA Nephropathy Patients; APRIL, a proliferation-inducing ligand; BAFF, B cell-activating factor of the tumor necrosis factor family; BEYOND, A Phase 3, Randomized, Double-blind, Placebo-controlled Study of BION-1301 in Adults With IgA Nephropathy; I CAN, A Phase 2, Double-Blind, Randomized, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Ravulizumab in Adult Participants With Proliferative Lupus Nephritis or Immunoglobulin A Nephropathy; IgAN, immunoglobulin A nephropathy; IMAGINATION, A Phase III, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of RO7434656, an Antisense Inhibitor of Complement Factor B, in Patients With Primary IgA Nephropathy at High Risk of Progression; ORIGIN3, A Phase 2b/3, Multi-part, Randomized, Double-Blinded, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Atacicept in Subjects With IgA Nephropathy (IgAN); RAINIER, A Phase 3, Randomized, Double-blind, Placebo-controlled Study of Povetacicept in Adults With Immunoglobulin A Nephropathy; VISIONARY, A Phase 3, Multicenter, Randomized, Double-blind, Placebo-controlled Trial to Evaluate the Efficacy and Safety of Sibeprenlimab Administered Subcutaneously in Subjects With Immunoglobulin A Nephropathy.

Results of a randomized double-blind placebo-controlled Phase 2 study propose iptacopan as an alternative complement pathway inhibitor for IgA nephropathy

Hong Zhang¹, Dana V. Rizk², Vlado Perkovic³, Bart Maes⁴, Naoki Kashihara⁵, Brad Rovin⁶, Hernán Trimarchi⁷, Ben Sprangers^{8,9}, Matthias Meier¹⁰, Dmitrij Kollins¹⁰, Olympia Papachristofi¹⁰, Julie Miljevic¹¹, Guido Junge¹¹, Prasanna Kumar Nidamarty¹², Alan Charney¹³ and Jonathan Barratt^{14,15}

¹Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People's Republic of China; ²Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; ³University of New South Wales, Sydney, New South Wales, Australia; ⁴Department of Nephrology, AZ Delta, Roeselare, Belgium; ⁵Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan; ⁶Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; ⁷Nephrology Service and Kidney Transplantation Unit, Hospital Británico de Buenos Aires, Buenos Aires, Argentina; ⁸Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium; ⁹Department of Nephrology, University Hospitals Leuven, Leuven, Belgium; ¹⁰Novartis Pharma AG, Basel, Switzerland; ¹¹Novartis Institutes for BioMedical Research, Basel, Switzerland; ¹²Novartis Healthcare Pvt Limited, Hyderabad, India; ¹³Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA; ¹⁴Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; and ¹⁵The John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK

Targeting the alternative complement pathway is an attractive therapeutic strategy given its role in the pathogenesis of immunoglobulin A nephropathy (IgAN). Iptacopan (LNP023) is an oral, proximal alternative complement inhibitor that specifically binds to Factor B. Our randomized, double-blind, parallel-group adaptive Phase 2 study (NCT0373461) enrolled patients with biopsy-confirmed IgAN (within previous three years) with estimated glomerular filtration rates of 30 mL/min/1.73 m² and over and urine protein 0.75 g/24 hours and over on stable doses of renin angiotensin system inhibitors.

Patients were randomized to four iptacopan doses (10, 50, 100, or 200 mg bid) or placebo for either a three-month (Part 1; 46 patients) or a six-month (Part 2; 66 patients) treatment period. The primary analysis evaluated the dose-response relationship of iptacopan versus placebo on 24-hour urine protein-to-creatinine ratio (UPCR) at three months. Other efficacy, safety and biomarker parameters were assessed. Baseline characteristics were generally well-balanced across treatment arms. There was a statistically significant dose-response effect, with 23% reduction in UPCR achieved with iptacopan 200 mg bid (80% confidence interval 8-34%) at three months. UPCR decreased further through six months in iptacopan 100 and 200 mg arms (from a mean of 1.3 g/g at baseline to 0.8 g/g at six months

in the 200 mg arm). A sustained reduction in complement biomarker levels including plasma Bb, serum Wieslab, and urinary C5b-9 was observed. Iptacopan was well-tolerated, with no reports of deaths, treatment-related serious adverse events or bacterial infections, and led to strong inhibition of alternative complement pathway activity and persistent proteinuria reduction in patients with IgAN. Thus, our findings support further evaluation of iptacopan in the ongoing Phase 3 trial (APPLAUSE-IgAN; NCT04578834).

Kidney International (2024) **105**, 189–199; <https://doi.org/10.1016/j.kint.2023.09.027>

KEYWORDS: alternative pathway; biomarkers; complement; IgA nephropathy; iptacopan (LNP023); proteinuria

Copyright © 2023, International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).

IgA nephropathy (IgAN) is the most common form of glomerulonephritis,¹ with a global incidence of approximately 25 per million per year.² There are regional variations in biopsy practices and in the occurrence of IgAN, with a higher prevalence rate and a higher risk of progression to kidney failure observed in Asians.³⁻⁵ Around 15% to 40% of patients with IgAN may develop kidney failure within 10 to 20 years of diagnosis, placing considerable socioeconomic burden on individuals, caregivers, and health care systems globally.^{6,7} Risk factors for progression to kidney failure include persistent high proteinuria (>1 g/d), hypertension, reduced glomerular filtration rate (GFR), and histologic MEST-C score at diagnosis.⁸⁻¹⁰

Correspondence: Hong Zhang, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, No. 8 Xi Shi Ku Street, Xi Cheng District, Beijing 100034, China. E-mail: hangzh@pku.edu.cn

Received 7 December 2022; revised 30 August 2023; accepted 27 September 2023; published online 31 October 2023

Kidney International (2024) **105**, 189–199

clinical trial

Check for updates

see commentary on page 28
OPEN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ORIGINAL ARTICLE

Alternative Complement Pathway Inhibition with Iptacopan in IgA Nephropathy

V. Perkovic, J. Barratt, B. Rovin, N. Kashihara, B. Maes, H. Zhang, H. Trimarchi, D. Kollins, O. Papachristofi, S. Jacinto-Sanders, T. Merkel, N. Guerard, R. Renfurm, T. Hach, and D.V. Rizk, for the APPLAUSE-IgAN Investigators*

ABSTRACT

BACKGROUND

The alternative complement pathway plays a key role in the pathogenesis of IgA nephropathy. Iptacopan specifically binds to factor B and inhibits the alternative pathway.

METHODS

In this phase 3, double-blind, randomized, placebo-controlled trial, we enrolled adults with biopsy-confirmed IgA nephropathy and proteinuria (defined as a 24-hour urinary protein-to-creatinine ratio of ≥ 1 [with protein and creatinine both measured in grams]) despite optimized supportive therapy. Patients were randomly assigned, in a 1:1 ratio, to receive oral iptacopan (200 mg) or placebo twice daily for 24 months while continuing to receive supportive therapy. The primary objective of this prespecified interim analysis was to assess the efficacy of iptacopan as compared with that of placebo in reducing proteinuria at month 9; the primary end point was the change from baseline in the 24-hour urinary protein-to-creatinine ratio at month 9. The proportion of patients who had a 24-hour urinary protein-to-creatinine ratio of less than 1 at month 9 without receiving rescue or alternative medication or undergoing kidney-replacement therapy (dialysis or transplantation) was a secondary end point. Safety was also assessed. The effect of iptacopan on kidney function will be assessed at the end of the 2-year double-blind treatment period.

RESULTS

The main trial population included 222 patients in the iptacopan group and 221 in the placebo group. The interim efficacy analysis included the first 250 patients who underwent randomization in the main trial population (125 patients in each group) and who remained in the trial until month 9 or discontinued the trial by month 9. Safety was assessed in all the patients in the main trial population. At month 9, the adjusted geometric mean 24-hour urinary protein-to-creatinine ratio was 38.3% (95% confidence interval, 26.0 to 48.6; two-sided $P<0.001$) lower with iptacopan than with placebo. The reduction in proteinuria was supported by consistent results in secondary end point analyses. There were no unexpected safety findings with iptacopan. The incidence of adverse events that occurred during the treatment period was similar in the two groups; most events were mild to moderate in severity and reversible. No increased risk of infection was observed.

CONCLUSIONS

Among patients with IgA nephropathy, treatment with iptacopan resulted in a significant and clinically meaningful reduction in proteinuria as compared with placebo. (Funded by Novartis; APPLAUSE-IgAN ClinicalTrials.gov number, NCT04578834.)

Results of a randomised, placebo-controlled trial of apatacopan as an allograft pathway inhibitor

Hong Zhang¹, Dana V. Rizk²,
Hernán Trimarchi⁷, Ben Sprar
Julie Milojevic¹¹, Guido Jung¹
Jonathan Barratt^{14,15}

¹Renal Division, Peking University First Nephrology, Department of Medicine, Wales, Sydney, New South Wales, Aust Hypertension, Kawasaki Medical Scho Columbus, Ohio, USA; ⁷Nephrology Ser ⁸Department of Microbiology, Immuno ⁹Department of Nephrology, University for BioMedical Research, Basel, Switz Corporation, East Hanover, New Jersey; John Walls Renal Unit, University Hos

Targeting the alternative complement attractive therapeutic strategy give pathogenesis of immunoglobulin I / Iptacopan (LNP023) is an oral, pro: complement inhibitor that specific Our randomized, double-blind, parallel Phase 2 study (NCT03373461) enrolls biopsy-confirmed IgAN (within pre-estimated glomerular filtration rate and over and urine protein 0.75 g/24h stable doses of renin angiotensin II. Patients were randomized to four doses: 100, 200, 400 mg bid) or placebo for (Part 1; 46 patients) or a six-month treatment period. The primary analysis response relationship of iptacopan hour urine protein-to-creatinine ratio months. Other efficacy, safety and were assessed. Baseline characteristics balanced across treatment arms. The significant dose-response effect, with UPCR achieved with iptacopan 200 mg (8-34%) at three months. UPCR through six months in iptacopan 1 (from a mean of 1.3 g/g at baseline)

Correspondence: Hong Zhang, Renal Division, Peking University Institute of Nephrology, Cheng District, Beijing 100034, China. E-mail: honqzh@bjmu.edu.

Received 7 December 2022; revised 30 August 2023; accepted 27 September 2023; published online 31 October 2023

Kidney International (2024) 105, 189–199

Home > News > Novartis Fabhalta® (iptacopan) meets Phase III primary endpoint, slows kidney function decline in patients with IgA nephropathy (IgAN)

Novartis Fabhalta® (iptacopan) meets Phase III primary endpoint, slows kidney function decline in patients with IgA nephropathy (IgAN)

Oct 16, 2025

- In APPLAUSE-IgAN final analysis, Fabhalta demonstrated statistically significant, clinically meaningful improvement in estimated glomerular filtration rate (eGFR) slope vs. placebo over two years¹
 - eGFR is key marker of kidney function; IgAN is progressive autoimmune kidney disease that leads to kidney failure in many patients¹⁻³
 - Fabhalta is first and only approved complement inhibitor for adults with IgAN and has potential to delay disease progression^{4,5}
 - Fabhalta received accelerated approval for reduction of proteinuria in adults with IgAN in US in 2024; data support 2026 submission for traditional FDA approval^{4,5}

Basel, October 16, 2025 - Novartis today announced positive final results from APPLAUSE-IgAN, a Phase III study evaluating Fabhalta® (iptacopan) in adults living with IgA nephropathy (IgAN). Fabhalta, an oral alternative complement pathway inhibitor, demonstrated statistically significant, clinically meaningful superiority compared to placebo in slowing IgAN progression measured by annualized total slope of estimated glomerular filtration rate (eGFR) decline over two years¹.

"Progressive diseases such as IgAN present an urgent need for interventions that can ultimately improve kidney health. Many people with IgAN commonly experience fear and anxiety of disease progression," said Ruchira Glaser, Development Unit Head, Cardiovascular, Renal & Metabolic, Novartis. "We are excited about today's positive Phase III APPLAUSE-IgAN results showing slowed eGFR decline, which add to the growing evidence of Fabhalta as a targeted therapy to preserve long-term kidney function, giving hope to people living with this condition."

Novartis intends to use these data to support Fabhalta submissions in 2026. Alongside Fabhalta, Novartis continues to advance its multi-asset IgAN portfolio, which also includes Vapnafis® (atrasentan) and investigational compound zigakibart.

IgAN is a progressive autoimmune kidney disease with approximately 25 per million people newly diagnosed worldwide each year³. IgAN is highly debilitating as it leads to glomerular inflammation, proteinuria, and a gradual decline in eGFR². Up to 50% of patients with persistent proteinuria progress to kidney failure within 10 to 20 years of diagnosis, often requiring dialysis or kidney transplantation as part of long-term disease management^{2,6,7}. Furthermore, people living with IgAN often face mental

Table 3 | Phase 3 clinical trials open in 2025 evaluating new treatments for IgAN

Drug targets	Drug	Target	Clinical trial Registration number	Status as of July 2024
Drugs targeting the production of pathogenic forms of IgAN	Sibeprenlimab (VIS649)	APRIL	VISIONARY NCT05248646	In follow-up
	Zigakibart (BION-1301)	APRIL	BEYOND NCT05852938	Recruiting
	Atacicept	APRIL/BAFF	ORIGIN3 NCT04716231	Recruiting
	Telitacicept	APRIL/BAFF	NCT05799287	In follow-up
	Povetacicept	APRIL/BAFF	RAINIER NCT06564142	Recruiting
Drugs targeting IgA-containing immune complex-mediated inflammation	Iptacopan (LNP023)	Complement alternative pathway factor B	APPLAUSE-IgAN NCT04578834	In follow-up
	Sefaxersen (RO7434656)	Complement alternative pathway factor B	IMAGINATION NCT05797610	Recruiting
	Ravulizumab	Complement terminal pathway C5	I CAN NCT06291376	Recruiting
Drugs targeting the generic downstream consequences of IgAN-induced nephron loss	Atrasentan	Endothelin A receptor	ALIGN NCT04573478	In follow-up

ALIGN, A Phase 3, Randomized, Double-blind, Placebo-controlled Study of Atrasentan in Patients With IgA Nephropathy at Risk of Progressive Loss of Renal Function; APPLAUSE-IgAN, A Multi-center, Randomized, Double-blind, Placebo-controlled, Parallel Group, Phase III Study to Evaluate the Efficacy and Safety of LNP023 in Primary IgA Nephropathy Patients; APRIL, a proliferation-inducing ligand; BAFF, B cell-activating factor of the tumor necrosis factor family; BEYOND, A Phase 3, Randomized, Double-blind, Placebo-controlled Study of BION-1301 in Adults With IgA Nephropathy; I CAN, A Phase 2, Double-Blind, Randomized, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Ravulizumab in Adult Participants With Proliferative Lupus Nephritis or Immunoglobulin A Nephropathy; IgAN, immunoglobulin A nephropathy; IMAGINATION, A Phase III, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of RO7434656, an Antisense Inhibitor of Complement Factor B, in Patients With Primary IgA Nephropathy at High Risk of Progression; ORIGIN3, A Phase 2b/3, Multi-part, Randomized, Double-Blinded, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Atacicept in Subjects With IgA Nephropathy (IgAN); RAINIER, A Phase 3, Randomized, Double-blind, Placebo-controlled Study of Povetacicept in Adults With Immunoglobulin A Nephropathy; VISIONARY, A Phase 3, Multicenter, Randomized, Double-blind, Placebo-controlled Trial to Evaluate the Efficacy and Safety of Sibeprenlimab Administered Subcutaneously in Subjects With Immunoglobulin A Nephropathy.

ORIGINAL ARTICLE

Atrasentan in Patients with IgA Nephropathy

Hiddo J.L. Heerspink, Ph.D., Meg Jardine, M.B., B.S., Ph.D.,
Donald E. Kohan, M.D., Ph.D., Richard A. Lafayette, M.D., Adeera Levin, M.D.,
Adrian Liew, M.D., Hong Zhang, Ph.D., Amit Lodha, M.B., B.S.,
Todd Gray, M.S.P.H., Yi Wang, Ph.D., Ronny Renfurm, M.D.,
and Jonathan Barratt, M.D., for the ALIGN Study Investigators*

ABSTRACT

BACKGROUND

Patients with IgA nephropathy and severe proteinuria have a high lifetime risk of kidney failure. The efficacy and safety of the selective endothelin type A receptor antagonist atrasentan in reducing proteinuria in patients with IgA nephropathy are incompletely understood.

METHODS

We are conducting a phase 3, multinational, double-blind, randomized, controlled trial involving adults with biopsy-proven IgA nephropathy, a total urinary protein excretion of at least 1 g per day, and an estimated glomerular filtration rate of at least 30 ml per minute per 1.73 m² of body-surface area. Patients were randomly assigned to receive atrasentan (0.75 mg per day) or matched placebo for 132 weeks. The primary outcome, assessed at a prespecified interim analysis of data from the first 270 patients in the main stratum, was the change in the 24-hour urinary protein-to-creatinine ratio from baseline to week 36; the change was estimated with the use of a repeated-measures model. (An exploratory stratum of patients who were receiving a sodium-glucose cotransporter 2 inhibitor were included in a separate analysis.) Safety analyses were based on adverse events across the entire main stratum.

RESULTS

A total of 340 patients were recruited into the main stratum. Among the first 270 patients in the main stratum (135 per trial group) who completed the week 36 visit, the geometric mean percentage change in the urinary protein-to-creatinine ratio relative to baseline was significantly greater with atrasentan (~38.1%) than with placebo (~3.1%), with a geometric mean between-group difference of ~36.1 percentage points (95% confidence interval, ~44.6 to ~26.4; $P < 0.001$). The percentage of patients with adverse events did not differ substantially between the two groups. Fluid retention was reported by 19 of 169 patients (11.2%) in the atrasentan group and in 14 of 170 (8.2%) in the placebo group but did not lead to discontinuation of the trial regimen. No apparent cases of cardiac failure or severe edema occurred.

CONCLUSIONS

In this prespecified interim analysis, atrasentan resulted in a significant and clinically meaningful reduction in proteinuria as compared with placebo in patients with IgA nephropathy. (Funded by Novartis; ALIGN ClinicalTrials.gov number, NCT04573478.)

From the Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands (H.J.L.H.); the National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney (M.J.); the Division of Nephrology, University of Utah Health, Salt Lake City (D.E.K.); Stanford University, Stanford, CA (R.A.L.); the University of British Columbia, Vancouver, Canada (A. Levin); Mount Elizabeth Novena Hospital, Singapore (A. Liew); Peking University First Hospital, Beijing (H.Z.); Chinook Therapeutics, Seattle (T.G.); Novartis, East Hanover, NJ (A. Lodha, Y.W.); Novartis, Basel, Switzerland (R.R.); and the University of Leicester, United Kingdom (J.B.). Dr. Heerspink can be contacted at h.j.jambers.heerspink@umcg.nl or at University Medical Center Groningen, Hanzelplein 1, PO Box 30 001, 9700 RB Groningen, the Netherlands.

*A complete list of the ALIGN Study Investigators is available in the Supplementary Appendix, available at NEJM.org.

This article was published on October 25, 2024, at NEJM.org.

DOI: 10.1056/NEJMoa2409415

Copyright © 2024 Massachusetts Medical Society.

ORIGINAL ARTICLE

Atrasentan in Patients with IgA Nephropathy

Hiddo J.L. Heerspink, Ph.D., Meg Jardine, M.B., B.S., Ph.D.,
Donald E. Kohan, M.D., Ph.D., Richard A. Lafayette, M.D., Adeera Levin, M.D.,
Adrian Liew, M.D., Hong Zhang, Ph.D., Amit Lodha, M.B., B.S.,
Todd Gray, M.S.P.H., Yi Wang, Ph.D., Ronny Renfurm, M.D.,
and Jonathan Barratt, M.D., for the ALIGN Study Investigators*

ABSTRACT

BACKGROUND

Patients with IgA nephropathy and severe proteinuria have a high lifetime risk of kidney failure. The efficacy and safety of the selective endothelin type A receptor antagonist atrasentan in reducing proteinuria in patients with IgA nephropathy are incompletely understood.

METHODS

We are conducting a phase 3, multinational, double-blind, randomized, controlled trial involving adults with biopsy-proven IgA nephropathy, a total urinary protein excretion of at least 1 g per day, and an estimated glomerular filtration rate of at least 30 ml per minute per 1.73 m² of body-surface area. Patients were randomly assigned to receive atrasentan (0.75 mg per day) or matched placebo for 132 weeks. The primary outcome, assessed at a prespecified interim analysis of data from the first 270 patients in the main stratum, was the change in the 24-hour urinary protein-to-creatinine ratio from baseline to week 36; the change was estimated with the use of a repeated-measures model. (An exploratory stratum of patients who were receiving a sodium-glucose cotransporter 2 inhibitor were included in a separate analysis.) Safety analyses were based on adverse events across the entire main stratum.

RESULTS

A total of 340 patients were recruited into the main stratum. Among the first 270 patients in the main stratum (135 per trial group) who completed the week 36 visit, the geometric mean percentage change in the urinary protein-to-creatinine ratio relative to baseline was significantly greater with atrasentan (~38.1%) than with placebo (~3.1%), with a geometric mean between-group difference of ~36.1 percentage points (95% confidence interval, ~44.6 to ~26.4; $P < 0.001$). The percentage of patients with adverse events did not differ substantially between the two groups. Fluid retention was reported by 19 of 169 patients (11.2%) in the atrasentan group and in 14 of 170 (8.2%) in the placebo group but did not lead to discontinuation of the trial regimen. No apparent cases of cardiac failure or severe edema occurred.

CONCLUSIONS

In this prespecified interim analysis, atrasentan resulted in a significant and clinically meaningful reduction in proteinuria as compared with placebo in patients with IgA nephropathy. (Funded by Novartis; ALIGN ClinicalTrials.gov number, NCT04573478.)

From the Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands (H.J.L.H.); the National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney (M.J.); the Division of Nephrology, University of Utah Health, Salt Lake City (D.E.K.); Stanford University, Stanford, CA (R.A.L.); the University of British Columbia, Vancouver, Canada (A. Levin); Mount Elizabeth Novena Hospital, Singapore (A. Liew); Peking University First Hospital, Beijing (H.Z.); Chinook Therapeutics, Seattle (T.G.); Novartis, East Hanover, NJ (A. Lodha, Y.W.); Novartis, Basel, Switzerland (R.R.); and the University of Leicester, United Kingdom (J.B.). Dr. Heerspink can be contacted at h.j.lambers.heerspink@umcg.nl or at University Medical Center Groningen, Hanzelplein 1, PO Box 30 001, 9700 RB Groningen, the Netherlands.

*A complete list of the ALIGN Study Investigators is available in the Supplementary Appendix, available at NEJM.org.

This article was published on October 25, 2024, at NEJM.org.

DOI: 10.1056/NEJMoa2409415

Copyright © 2024 Massachusetts Medical Society.

eGFR

Table 3 | Phase 3 clinical trials open in 2025 evaluating new treatments for IgAN

Drug targets	Drug	Target	Clinical trial Registration number	Status as of July 2024
Drugs targeting the production of pathogenic forms of IgAN	Sibeprenlimab (VIS649)	APRIL	VISIONARY NCT05248646	In follow-up
	Zigakibart (BION-1301)	APRIL	BEYOND NCT05852938	Recruiting
	Atacicept	APRIL/BAFF	ORIGIN3 NCT04716231	Recruiting
	Telitacicept	APRIL/BAFF	NCT05799287	In follow-up
	Povetacicept	APRIL/BAFF	RAINIER NCT06564142	Recruiting
Drugs targeting IgA-containing immune complex-mediated inflammation	Iptacopan (LNP023)	Complement alternative pathway factor B	APPLAUSE-IgAN NCT04578834	In follow-up
	Sefaxersen (RO7434656)	Complement alternative pathway factor B	IMAGINATION NCT05797610	Recruiting
	Ravulizumab	Complement terminal pathway C5	I CAN NCT06291376	Recruiting
Drugs targeting the generic downstream consequences of IgAN-induced nephron loss	Atrasentan	Endothelin A receptor	ALIGN NCT04573478	In follow-up

ALIGN, A Phase 3, Randomized, Double-blind, Placebo-controlled Study of Atrasentan in Patients With IgA Nephropathy at Risk of Progressive Loss of Renal Function; APPLAUSE-IgAN, A Multi-center, Randomized, Double-blind, Placebo-controlled, Parallel Group, Phase III Study to Evaluate the Efficacy and Safety of LNP023 in Primary IgA Nephropathy Patients; APRIL, a proliferation-inducing ligand; BAFF, B cell-activating factor of the tumor necrosis factor family; BEYOND, A Phase 3, Randomized, Double-blind, Placebo-controlled Study of BION-1301 in Adults With IgA Nephropathy; I CAN, A Phase 2, Double-Blind, Randomized, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Ravulizumab in Adult Participants With Proliferative Lupus Nephritis or Immunoglobulin A Nephropathy; IgAN, immunoglobulin A nephropathy; IMAGINATION, A Phase III, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of RO7434656, an Antisense Inhibitor of Complement Factor B, in Patients With Primary IgA Nephropathy at High Risk of Progression; ORIGIN3, A Phase 2b/3, Multi-part, Randomized, Double-Blinded, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Atacicept in Subjects With IgA Nephropathy (IgAN); RAINIER, A Phase 3, Randomized, Double-blind, Placebo-controlled Study of Povetacicept in Adults With Immunoglobulin A Nephropathy; VISIONARY, A Phase 3, Multicenter, Randomized, Double-blind, Placebo-controlled Trial to Evaluate the Efficacy and Safety of Sibeprenlimab Administered Subcutaneously in Subjects With Immunoglobulin A Nephropathy.

Role of B cell-targeted therapies in the management of IgAN

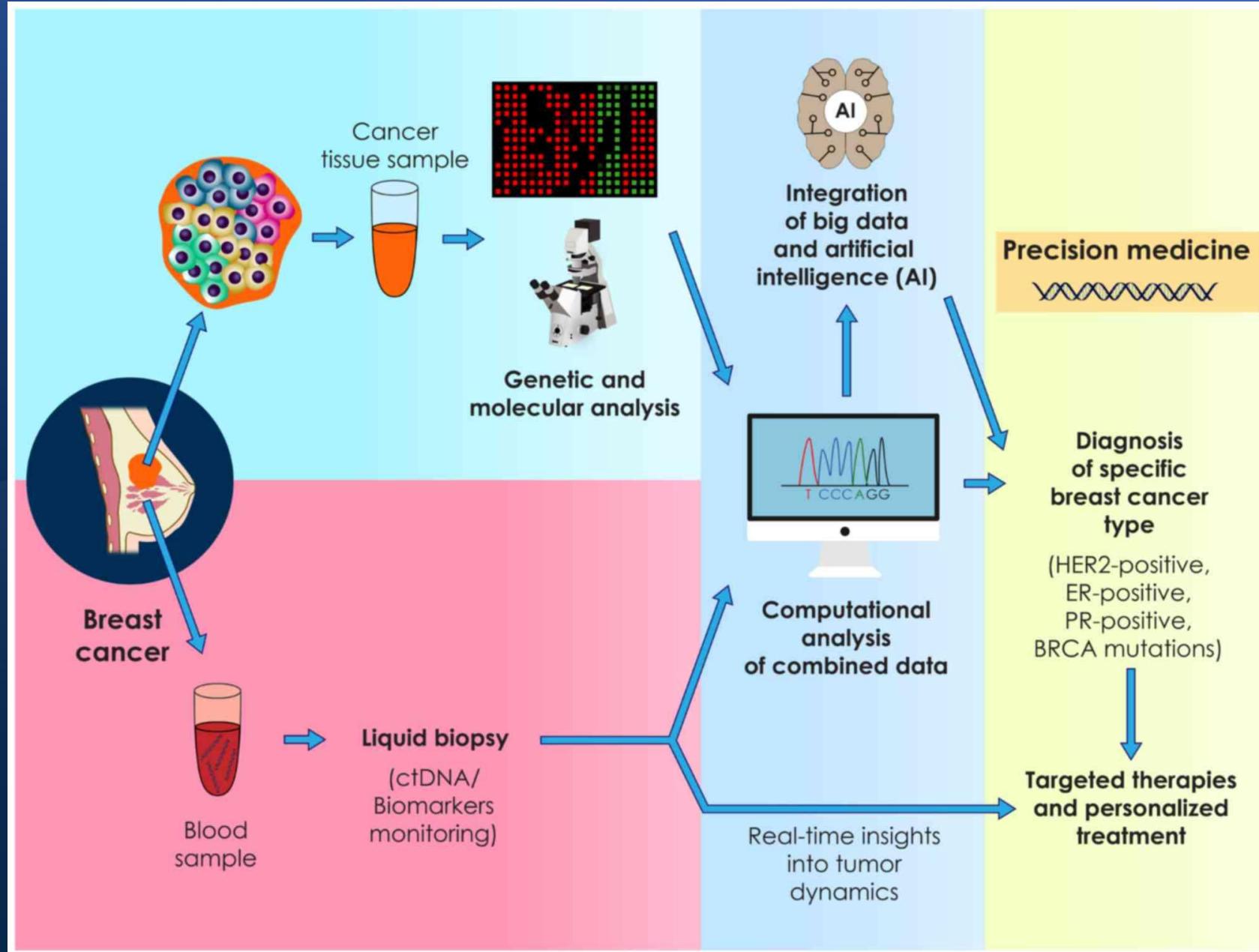
Professor Jonathan Barratt

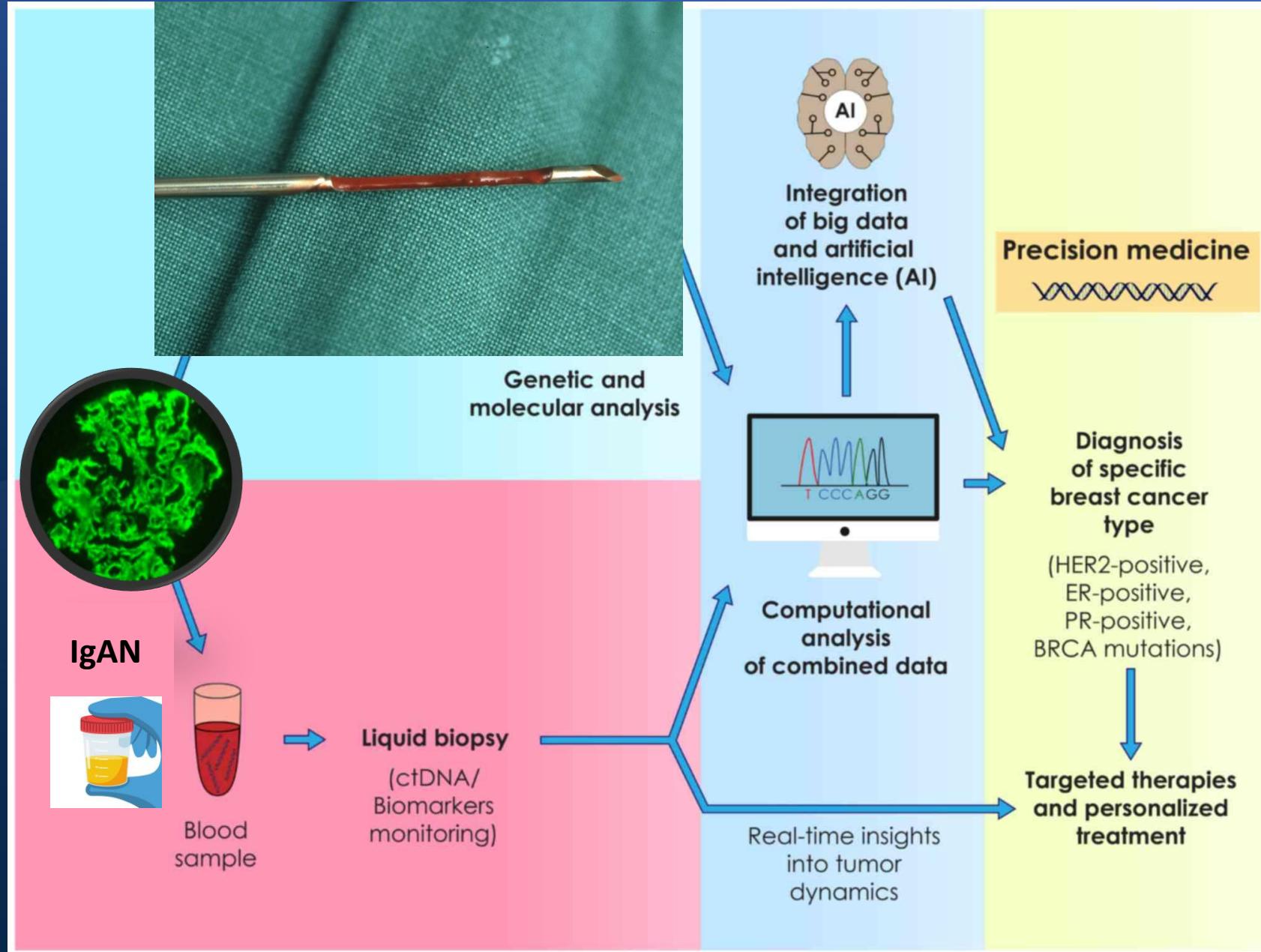
University of Leicester

&

John Walls Renal Unit, Leicester

December 5th 16.25–17.40




Future Clinical Trials in IgA Nephropathy

**Professor Jonathan Barratt
University of Leicester
&
John Walls Renal Unit, Leicester**

December 6th 11.10–12.25

Recruiting

Trial of the Impact of Sibemprelimab on Immunoglobulin A Nephropathy Kidney Tissue

ClinicalTrials.gov ID NCT06740526

Sponsor Otsuka Pharmaceutical Development & Commercialization, Inc.

Information provided by Otsuka Pharmaceutical Development & Commercialization, Inc. (Responsible Party)

Last Update Posted 2025-04-06

62nd ERA
CONGRESS
VIENNA / VIRTUAL
April 2024
Organized by
International Society
of Nephropathy

A mechanistic biopsy study of the effect of iptacopan on immunopathology in patients with IgA nephropathy (IgAN)

DANA V. ROK¹, BART MAES², HONG ZHANG³, MATTHIAS KRETTZLER⁴, FRANK ETHEP⁵, CLINT W. ANDER⁶, MARIE-ANNE VALENTIN⁷, VERN N.⁸, MARIA FERNANDA DI PATA⁹, JONATHAN BARRATT¹⁰

¹The University of Alabama at Birmingham, Alabama, United States of America, ²Orbis General Hospital, West Flanders, Belgium, ³Peking University First Hospital, Beijing, P.R. China, ⁴University of Michigan, Ann Arbor, MI, United States of America, ⁵Novartis Pharma AG, Basel, Switzerland, ⁶Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States of America, ⁷Novartis Pharmaceuticals SA, Hyderabad, India, ⁸Novartis Pharmaceuticals SA, Barcelona, Spain, ⁹University of Leicester & Leicester General Hospital, Leicester, United Kingdom

INTRODUCTION

- Overactivation of the alternative pathway is one of the key drivers of IgAN. Targeting the alternative pathway may address an unmet need for targeted therapy to improve the clinical evolution and result in the improvement of kidney function and prevention of disease progression.^{1,2}
- Iptacopan is a proximal complement inhibitor that targets factor B to specifically inhibit the alternative complement pathway while leaving signaling from the lectin and classical pathways intact.^{3,4}

AIM

- This repeat-biopsy mechanistic study aims to evaluate the effects of iptacopan on the underlying immunopathology in patients with IgAN and to better understand the role of complement activation in IgAN

ABBREVIATIONS
ACE, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; B3c, twice a day; C3c, complement 3c; eGFR, estimated glomerular filtration rate; IgAN, IgA nephropathy; IgG, immunoglobulin G; RBC/Hpf, red blood cell per high power field; B3cT3, sodium-glucose co-transporter 2 inhibitors; UPCR, urine protein:creatinine ratio.

METHOD

- This Phase IIa multicenter, single-arm, open-label, repeat-biopsy study will enroll up to 20 adult patients with IgAN (Figure). Key inclusion criteria include biopsy-proven IgAN; eGFR ≥ 30 mL/min/1.73 m²; proteinuria ≥ 0.8 g/g from FMV; receiving a maximally tolerated and/or stable dose of supportive care treatment (ACEi or ARB and/or SGLT2) for ≥ 90 days before baseline. Vaccination against *Neisseria meningitidis* and *Streptococcus pneumoniae* must be completed, and—if available and per local regulations—*Haemophilus influenzae* vaccination should be administered, at least 2 weeks before starting study treatment.

Table: Key Study Objectives

Objective	Endpoint (s)
Primary	
Quantifying the change after treatment with iptacopan in mesangial C3c and C3c-containing fragments	Achievement of a minimum one-grade reduction from baseline at 9 months in mesangial C3c and C3c-containing fragments
Describing the histopathological changes after iptacopan treatment	Change from baseline at 9 months in CD68+ cells and immunoglobulins
Exploratory	
Evaluating the histopathological changes in complement biomarkers after treatment with iptacopan	Change from baseline at 9 months in MEST-C score
Describing changes in UPCR, hematuria, and eGFR after treatment with iptacopan	Log-transformed ratio to baseline of UPCR at 9 months. Change from baseline at 9 months in dipstick and RBC/Hpf, and in eGFR
Exploring the correlation of histopathological changes with proteinuria and eGFR changes after treatment with iptacopan	Correlation between changes in histology and eGFR changes

CONCLUSIONS

- This repeat-biopsy study will explore the impact of iptacopan on IgAN immunopathology by assessing glomerular complement activation together with renal histopathology, kidney function, and key biomarkers.
- The findings will enhance understanding of the mechanistic effects of iptacopan on IgAN and potential kidney protective benefits.

REFERENCES

- Zhang H, et al. *Kidney Int*. 2024;105(1):189-199.
- Rok DV, et al. *Kidney Int Rep*. 2023; 9(8):969-979.
- Schubert A, et al. *Proc Natl Acad Sci USA*. 2019;116(16):7926-7931.
- Novartis Pharmaceuticals Corporation. Fabilat[®] prescribing information. 2023. Available at: <https://www.accessdata.fda.gov/drugsatfdaatf/cder/atf/fabilat/2023/215717s000001.pdf> (accessed May 2023).

ACKNOWLEDGMENTS

Professional medical writing assistance was provided by Nupur Chauhan (Novartis Healthcare Pvt Ltd).

CONTACT INFORMATION

In case of any questions, please contact Dr. D.V. Rok at: dr.rok@uab.edu.

RECRUITING

A Study to Evaluate the Efficacy and Safety of RO7434656 in Participants With Primary Immunoglobulin A (IgA) Nephropathy at High Risk of Progression (IMAGINATION)

ClinicalTrials.gov ID NCT05797610

Sponsor Hoffmann-La Roche

Information provided by Hoffmann-La Roche (Responsible Party)

Last Update Posted 2024-05-10

RECRUITING

Study of Ravulizumab in Immunoglobulin A Nephropathy (IgAN) (ICAN)

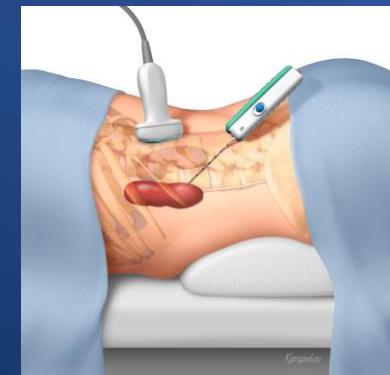
ClinicalTrials.gov ID NCT06291376

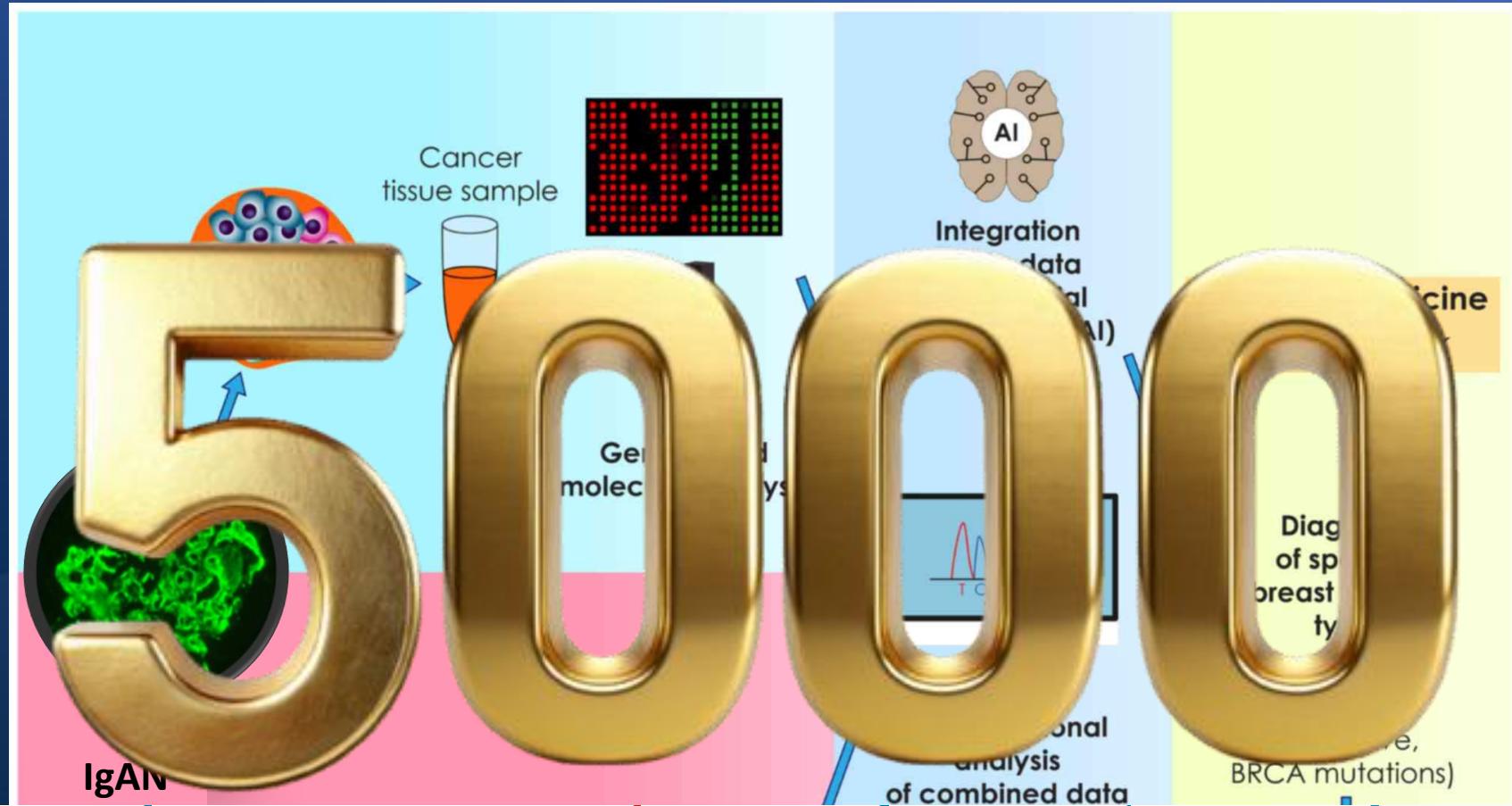
Sponsor Alexion Pharmaceuticals, Inc.

Information provided by Alexion Pharmaceuticals, Inc. (Responsible Party)

Last Update Posted 2024-05-03

Recruiting


Evaluation of Efficacy of Povetacicept in Adults With Immunoglobulin A Nephropathy (IgAN)


ClinicalTrials.gov ID NCT06564142

Sponsor Alpine Immune Sciences Inc, A Subsidiary of Vertex

Information provided by Alpine Immune Sciences, Inc. (Alpine Immune Sciences Inc, A Subsidiary of Vertex) (Responsible Party)

Last Update Posted 2024-12-05

IgAN

Targeted-release budesonide modifies key pathogenic biomarkers in immunoglobulin A nephropathy: insights from the NEFGAN trial

A Phase 2 Trial of Sibrelnimab in Patients with IgA Nephropathy

Long-Term Results from an Open-Label Extension Study of Atacept for the Treatment of IgA Nephropathy

Zigabart demonstrates clinical safety and efficacy in a Phase 1/2 trial of healthy volunteers and patients with IgA nephropathy

Randomized, double-blind, placebo-controlled phase 2 study assessing the efficacy and safety of felzabartam for IgA nephropathy

Results of a randomized double-blind placebo-controlled Phase 2 study propose ipzelogam as an alternative complement pathway inhibitor for IgA nephropathy

Efficacy and Safety of Raszilumab in IgA Nephropathy: A Phase 2 Randomized Double-Blind Placebo-Controlled Trial

Targeted-release budesonide modifies key pathogenic biomarkers in immunoglobulin A nephropathy: insights from the NEFGAN trial

A Phase 2 Trial of Sibrelnimab in Patients with IgA Nephropathy

Long-Term Results from an Open-Label Extension Study of Atacept for the Treatment of IgA Nephropathy

Zigabart demonstrates clinical safety and efficacy in a Phase 1/2 trial of healthy volunteers and patients with IgA nephropathy

Randomized, double-blind, placebo-controlled phase 2 study assessing the efficacy and safety of felzabartam for IgA nephropathy

Results of a randomized double-blind placebo-controlled Phase 2 study propose ipzelogam as an alternative complement pathway inhibitor for IgA nephropathy

Efficacy and Safety of Raszilumab in IgA Nephropathy: A Phase 2 Randomized Double-Blind Placebo-Controlled Trial

Targeted-release budesonide modifies key pathogenic biomarkers in immunoglobulin A nephropathy: insights from the NEFGAN trial

A Phase 2 Trial of Sibrelnimab in Patients with IgA Nephropathy

Long-Term Results from an Open-Label Extension Study of Atacept for the Treatment of IgA Nephropathy

Zigabart demonstrates clinical safety and efficacy in a Phase 1/2 trial of healthy volunteers and patients with IgA nephropathy

Randomized, double-blind, placebo-controlled phase 2 study assessing the efficacy and safety of felzabartam for IgA nephropathy

Results of a randomized double-blind placebo-controlled Phase 2 study propose ipzelogam as an alternative complement pathway inhibitor for IgA nephropathy

Efficacy and Safety of Raszilumab in IgA Nephropathy: A Phase 2 Randomized Double-Blind Placebo-Controlled Trial

Targeted-release budesonide modifies key pathogenic biomarkers in immunoglobulin A nephropathy: insights from the NEFGAN trial

A Phase 2 Trial of Sibrelnimab in Patients with IgA Nephropathy

Long-Term Results from an Open-Label Extension Study of Atacept for the Treatment of IgA Nephropathy

Zigabart demonstrates clinical safety and efficacy in a Phase 1/2 trial of healthy volunteers and patients with IgA nephropathy

Randomized, double-blind, placebo-controlled phase 2 study assessing the efficacy and safety of felzabartam for IgA nephropathy

Results of a randomized double-blind placebo-controlled Phase 2 study propose ipzelogam as an alternative complement pathway inhibitor for IgA nephropathy

Efficacy and Safety of Raszilumab in IgA Nephropathy: A Phase 2 Randomized Double-Blind Placebo-Controlled Trial

Targeted-release budesonide modifies key pathogenic biomarkers in immunoglobulin A nephropathy: insights from the NEFGAN trial

A Phase 2 Trial of Sibrelnimab in Patients with IgA Nephropathy

Long-Term Results from an Open-Label Extension Study of Atacept for the Treatment of IgA Nephropathy

Zigabart demonstrates clinical safety and efficacy in a Phase 1/2 trial of healthy volunteers and patients with IgA nephropathy

Randomized, double-blind, placebo-controlled phase 2 study assessing the efficacy and safety of felzabartam for IgA nephropathy

Results of a randomized double-blind placebo-controlled Phase 2 study propose ipzelogam as an alternative complement pathway inhibitor for IgA nephropathy

Efficacy and Safety of Raszilumab in IgA Nephropathy: A Phase 2 Randomized Double-Blind Placebo-Controlled Trial

Targeted-release budesonide modifies key pathogenic biomarkers in immunoglobulin A nephropathy: insights from the NEFGAN trial

A Phase 2 Trial of Sibrelnimab in Patients with IgA Nephropathy

Long-Term Results from an Open-Label Extension Study of Atacept for the Treatment of IgA Nephropathy

Zigabart demonstrates clinical safety and efficacy in a Phase 1/2 trial of healthy volunteers and patients with IgA nephropathy

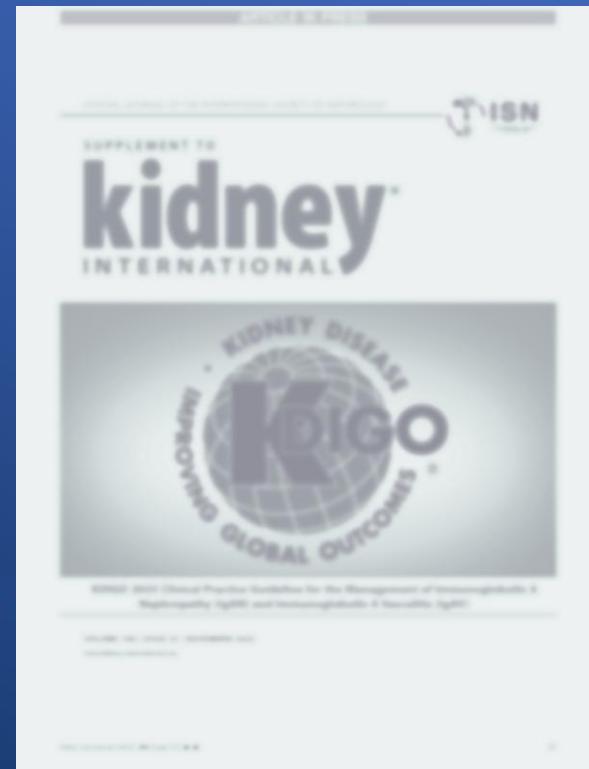
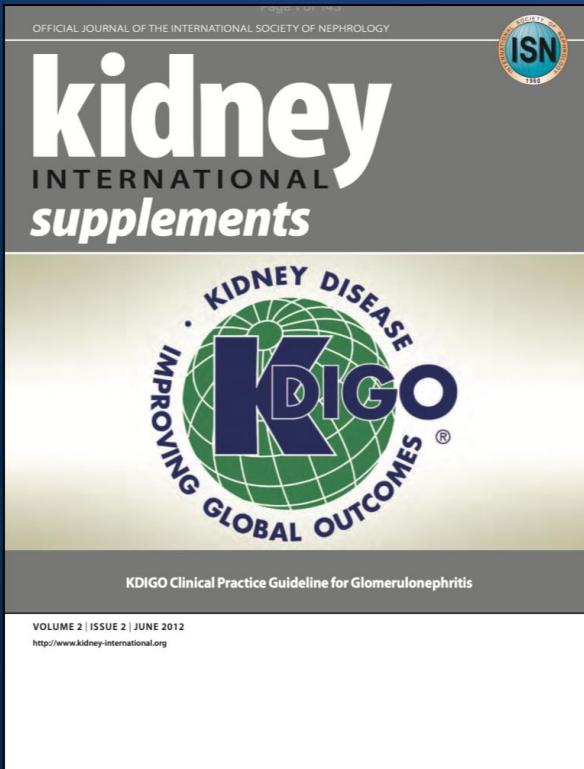
Randomized, double-blind, placebo-controlled phase 2 study assessing the efficacy and safety of felzabartam for IgA nephropathy

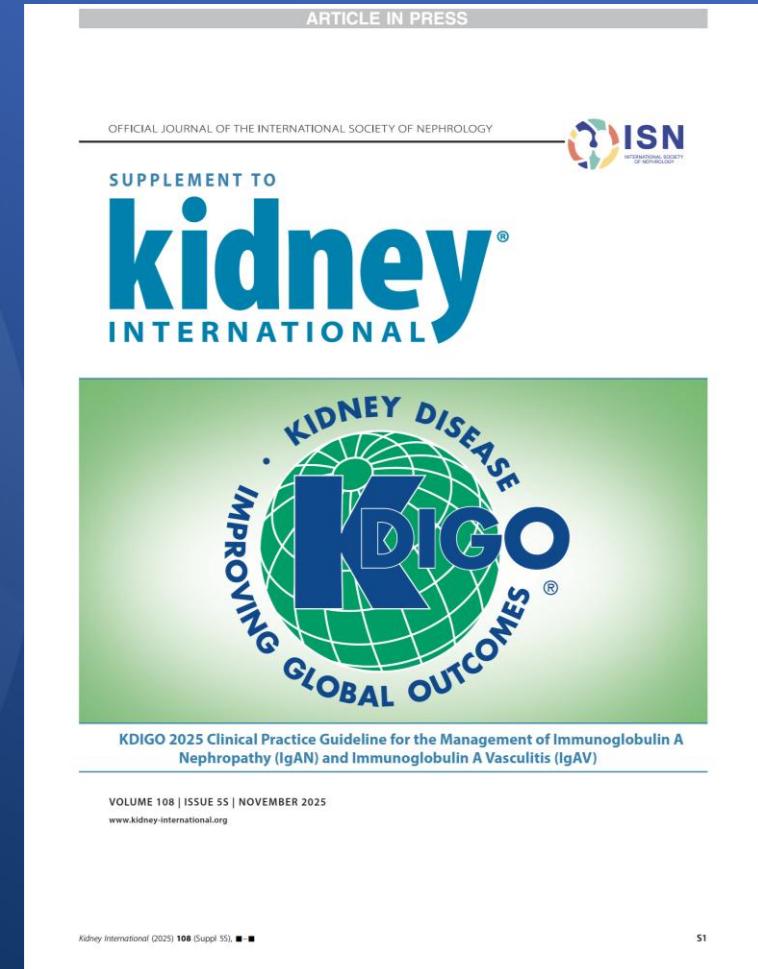
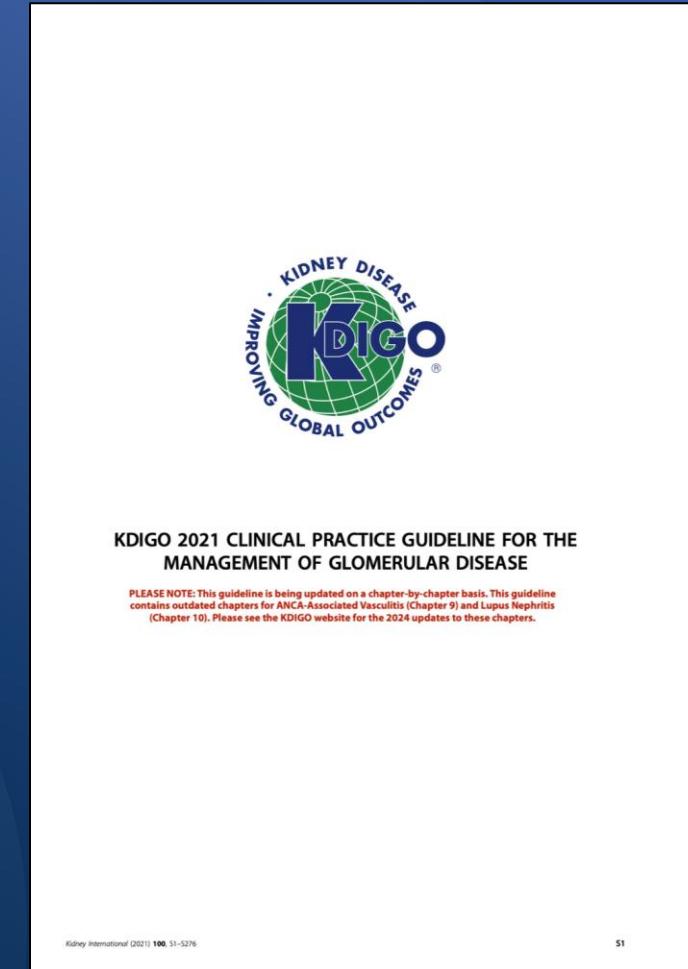
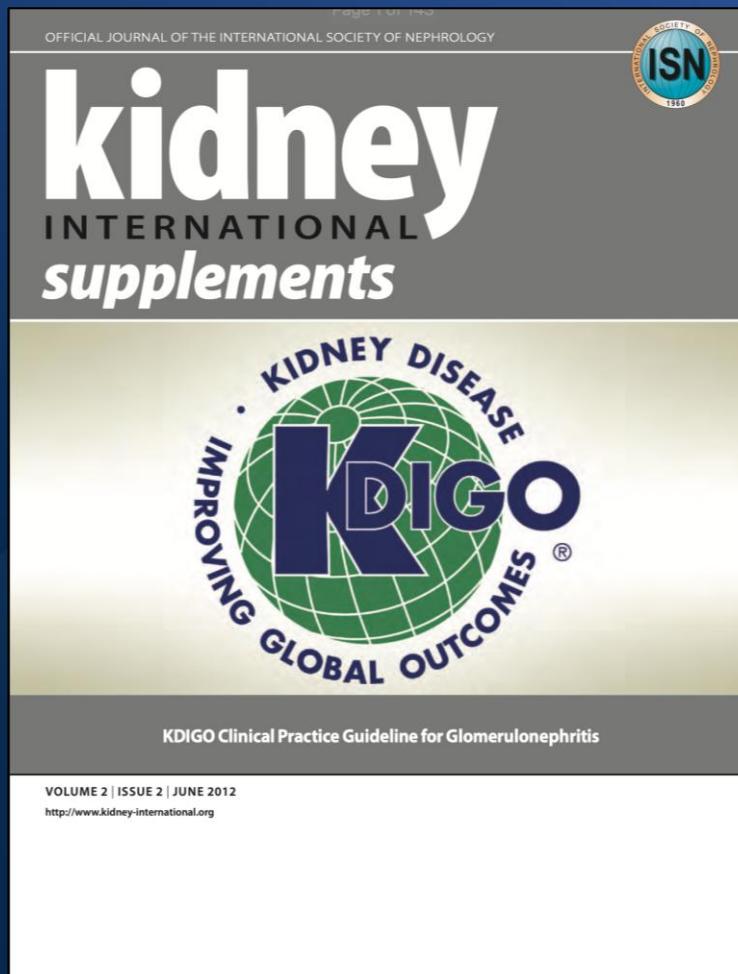
Results of a randomized double-blind placebo-controlled Phase 2 study propose ipzelogam as an alternative complement pathway inhibitor for IgA nephropathy

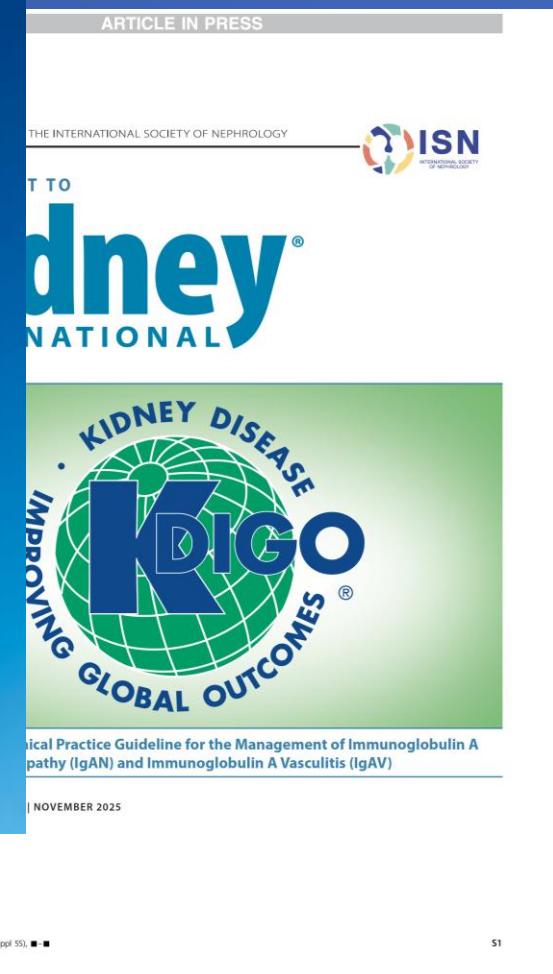
Efficacy and Safety of Raszilumab in IgA Nephropathy: A Phase 2 Randomized Double-Blind Placebo-Controlled Trial

Targeted-release budesonide modifies key pathogenic biomarkers in immunoglobulin A nephropathy: insights from the NEFGAN trial

A Phase 2 Trial of Sibrelnimab in Patients with IgA Nephropathy



Long-Term Results from an Open-Label Extension Study of Atacept for the Treatment of IgA Nephropathy




Zigabart demonstrates clinical safety and efficacy in a Phase 1/2 trial of healthy volunteers and patients with IgA nephropathy


Randomized, double-blind, placebo-controlled phase 2 study assessing the efficacy and safety of felzabartam for IgA nephropathy

Results of a randomized double-blind placebo-controlled Phase 2 study propose ipzelogam as an alternative complement pathway inhibitor for IgA nephropathy

Efficacy and Safety of Raszilumab in IgA Nephropathy: A Phase 2 Randomized Double-Blind Placebo-Controlled Trial

