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Background and Aim

Kidney transplant failure is still driven largely by chronic microvascular injury, fibrosis progression, and subtle
immune activation that often go undetected until irreversible damage has occurred.

Current clinical markers such as serum creatinine and eGFR change too late, giving clinicians little warning before
significant graft deterioration happens.

Protocol biopsies can identify early pathology, but they are invasive, costly, operator-dependent, and unsuitable
for frequent long-term monitoring.

Urine-derived progenitor cells offer a promising, non-invasive window into graft biology, yet their potential to serve
as an early molecular sensor of graft injury remains underexplored.

Epigenomic remodeling, particularly stress- and immune-related methylation shifts, may provide earlier and
more mechanistic signals of graft dysfunction compared with traditional biomarkers.

Integrating these molecular stress signatures into a predictive framework could enable clinicians to identify high-risk
grafts earlier, personalize monitoring, and intervene before irreversible decline.
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Objective/Aim

This study aimed to develop a multi-omics machine learning model leveraging transcriptomic and
methylation signatures from urine-derived renal progenitor cells to enable earlier and mechanistically
grounded prediction of long-term graft deterioration.



Methods

- Data Sources: Transcriptomic data were obtained from GSE235813 (RNA-seq, n=37 urine-derived renal progenitor
samples) and methylation data from GSE213458 (lllumina EPIC arrays, n=41 matched samples) from the Gene
Expression Omnibus (GEO).

 RNA-seq Processing: Reads were normalized using variance stabilizing transformation, reduced via a stacked
autoencoder, and modeled with a Random Forest classifier.

 Methylation Processing: IDAT files underwent noob normalization; CpGs were selected using mutual
information and variance filtering, then modeled with SHAP-informed XGBoost.

« Late-Fusion Framework: Transcriptomic and methylomic predictions were integrated using logistic regression to
generate the Long-Term Graft Risk Score (LTGRS).

« Model Evaluation: Used stratified 5-fold cross-validation and a 20% held-out test set, with AUROC and AUPRC
as primary metrics.

« Clinical Correlation: LTGRS was associated with eGFR slope, Banff ci fibrosis, and microvascular
inflammation scores (i, g, ptc).

* Feature Interpretability: Top transcriptomic and CpG contributors were identified using SHAP values, enabling
mechanistic interpretation of stress-response and injury pathways.



Results Table 1. Baseline Clinical, Donor, and Sampling Characteristics of the Kidney Transplant Cohort

Characteristic Overall Cohort (n = 41)

Recipient age at transplant, years 43.2+121
Female sex, n (%) 17 (41.5%)

Body mass index, kg/m? 24.6 (22.1-27.8)
Primary kidney disease: Diabetic nephropathy 11 (26.8%)
Primary kidney disease: Primary glomerulonephritis 16 (39.0%)
Primary kidney disease: Hypertensive nephrosclerosis 6 (14.6%)
Primary kidney disease: Other/unknown 8 (19.5%)

Donor type: Living donor

19 (46.3%)

Donor type: Deceased donor

22 (53.7%)

Donor age, years 47.5+13.8
Cold ischemia time (DD), hours 11.2 (8.5-16.4)
HLA mismatch (0—6) 3.5+1.3
PRA > 20%, n (%) 8 (19.5%)
Preformed DSA, n (%) 7 (17.1%)
Prior acute rejection, n (%) 9 (22.0%)
Time to urine sampling, months 5.7 (3.2-9.9)
eGFR at sampling, mL/min/1.73 m? 55.8+16.9
Serum creatinine, mg/dL 1.40+0.42
Urine PCR, g/g 0.38 (0.18-0.92)
Systolic BP, mmHg 132+ 15
Diastolic BP, mmHg 799
Induction: Basiliximab 24 (58.5%)
Induction: rATG 17 (41.5%)
Maintenance: TAC+MMF+steroid 33 (80.5%)
Maintenance: TAC+AZA+steroid 4 (9.8%)
Maintenance: mTOR-based 4 (9.8%)
Tacrolimus trough, ng/mL 6.3+1.9

Protocol biopsy within ¥3 months

36 (87.8%)

High-quality methylation data

41 (100%)

High-quality RNA-seq data

37 (90.2%)

Paired multi-omics data

37 (90.2%)

Outcome labels defined (no results)

Stable vs deteriorating groups (counts only)

The cohort is clinically heterogeneous, but
well-balanced across key transplant variables;
Living vs deceased donors, HLA mismatch, PRA
>20%, induction regimens, and primary kidney
diseases are fairly distributed, ensuring the
LTGRS model is tested across clinically
representative graft conditions.

The cohort captures the critical ischemia-
reperfusion dimension that drives epigenomic
injury; Cold ischemia time shows wide variation
(median ~11 hours), and deceased donors make
up more than half of the cohort



Results
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« The multimodal LTGRS shows the highest predictive performance, with ROC and PR curves consistently above single-omics models.

» The fused model maintains the best sensitivity and precision in key clinical regions, enabling earlier and more reliable identification of
high-risk patients.



Results

Mann-Whitney U p-value: 2.9005409119525844e-08
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LTGRS probabilities are markedly higher in deteriorating
grafts: The deteriorating group clusters around LTGRS =
0.75, while stable patients center near = 0.28, showing a clear
separation of long-term risk levels.

The distribution shapes confirm consistent biological
signal: Deteriorating grafts show a tight high-probability
distribution, while stable grafts display broader variability at
lower LTGRS values, indicating different underlying graft
states.

The Mann-Whitney U p < 0.0001 shows a highly significant separation, supporting LTGRS as a reliable early indicator of future graft decline.
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Top Multimodal Drivers of LTGRS in Urine-Derived Progenitor Cells
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* NR3C1, CTLA4, and IL10RA methylation show the highest positive SHAP values, indicating that epigenetic disruption of glucocorticoid and
immune-regulatory pathways is a major driver of elevated LTGRS risk.

* Reduced KLF9 and LINC01133 expression consistently shifts SHAP values toward higher risk, showing that weakened progenitor stress-
response and epithelial repair programs contribute strongly to poor long-term graft stability.

+ TGF-p fibrosis loading and immune activation scores add additional positive SHAP impact, indicating that fibrotic remodeling and sustained
immune signaling synergize with epigenomic alterations to push LTGRS upward.
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LTGRS Predictive Performance by Donor Type
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« LTGRS shows robust predictive accuracy in deceased-donor grafts, indicating that ischemia-reperfusion—driven epigenomic remodeling
amplifies the model’s discriminative capability compared with living-donor grafts.

+ Deceased-donor grafts show a higher overall LTGRS distribution, indicating stronger epigenomic stress signals captured by the model,

even when sampled from urine-derived progenitor cells.

* Greater variability in deceased-donor LTGRS indicates more heterogeneous injury biology, matching clinical reality that ischemia-

reperfusion stress is more unpredictable in deceased grafts.



Results

Correlation Map of LTGRS with Renal Function, Fibrosis,

Microvascular Injury, and Progenitor Signatures
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LTGRS shows a strong negative correlation with eGFR
slope, indicating that higher LTGRS tightly aligns with
faster long-term kidney function decline.

LTGRS is positively linked with Banff fibrosis and
microvascular injury scores, showing that higher risk
scores reflect more advanced structural and
inflammatory graft damage.

LTGRS correlates strongly with NR3CA1
hypermethylation and inversely with KLF9/LINC01133
expression, indicating that the risk signal captures
underlying  stress-response and  progenitor-cell
regulatory dysfunction.



Results

UMAP of Urine Progenitor Transcriptomes
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* High-LTGRS samples form a distinct UMAP cluster, indicating a shared transcriptomic program associated with long-term graft
deterioration.

* The high-risk cluster is enriched for deceased-donor grafts, consistent with stronger ischemia, reperfusion—driven epigenomic stress
signaling.

« Stable grafts remain tightly grouped in the low-risk transcriptomic region, showing that LTGRS cleanly maps onto biologically
meaningful expression states.
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CpG Methylation Correlation Map Showing Alignment with LTGRS,
Biopsy Microvascular Injury and Functional Decline
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* NR3C1 hypermethylation shows the strongest effect, marking glucocorticoid-pathway repression as a central mechanism distinguishing
high-risk grafts.

* Immune-regulatory CpGs (IL10RA, CTLA4) are consistently hypermethylated, supporting a shift toward impaired anti-inflammatory
signaling in deteriorating grafts.

* Fibrosis-linked CpGs cluster among the significant hits, aligning the LTGRS signal with early microvascular injury and progressive
interstitial fibrosis biology.



Results

cgl3725483 (NR3C1) Methylation vs Protocol Biopsy Microvascular Injury
Urine-Derived Progenitor Cells
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 Higher NR3C1 methylation strongly tracks with more severe microvascular injury. The upward trend shows that cg13725483
hypermethylation shows worsening biopsy damage (i + g + ptc), confirming it as a mechanistic injury marker.

 Deceased-donor grafts show a steeper slope, indicating amplified epigenomic stress. Compared with living donors, deceased-donor
samples cluster higher for the same methylation level, indicating stronger ischemia—reperfusion—linked injury biology.

« Strong correlations across all groups validate methylation as a reliable pathology-aligned biomarker. Consistent correlations show that
urinary progenitor epigenomic remodeling mirrors true histologic injury, reinforcing the clinical value of LTGRS.



Limitations

« Single-center cohort and modest sample size (n=41): Limits generalizability; findings require
validation in larger, multi-center transplant populations.

« Cross-sectional urine sampling at biopsy time only: Cannot determine how early LTGRS or
methylation changes emerge prior to clinical injury.

« Limited biopsy endpoints: Microvascular injury scoring (i + g + ptc) does not capture other
pathology domains such as chronic scarring or subclinical immune activation.

« Multi-omics integration affected by donor heterogeneity: Ischemia-reperfusion severity varies
widely between donors, introducing biological variability that may influence LTGRS patterns.

« Lack of mechanistic functional assays: Epigenomic signatures such as NR3C1 methylation are
strongly associated but not experimentally confirmed as causal drivers of graft injury.



Conclusions

This study presents an integrative multi-omics ML model using urine-derived renal progenitor data to
predict long-term graft outcomes. The approach offers an accurate, non-invasive, and interpretable
tool for early risk stratification and long-term monitoring in kidney transplant recipients.
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