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Background and Aim
• Kidney transplant failure is still driven largely by chronic microvascular injury, fibrosis progression, and subtle 

immune activation that often go undetected until irreversible damage has occurred.

• Current clinical markers such as serum creatinine and eGFR change too late, giving clinicians little warning before 

significant graft deterioration happens.

• Protocol biopsies can identify early pathology, but they are invasive, costly, operator-dependent, and unsuitable 

for frequent long-term monitoring.

• Urine-derived progenitor cells offer a promising, non-invasive window into graft biology, yet their potential to serve 

as an early molecular sensor of graft injury remains underexplored.

• Epigenomic remodeling, particularly stress- and immune-related methylation shifts, may provide earlier and 

more mechanistic signals of graft dysfunction compared with traditional biomarkers.

• Integrating these molecular stress signatures into a predictive framework could enable clinicians to identify high-risk 

grafts earlier, personalize monitoring, and intervene before irreversible decline.



Objective/Aim

This study aimed to develop a multi-omics machine learning model leveraging transcriptomic and 

methylation signatures from urine-derived renal progenitor cells to enable earlier and mechanistically 

grounded prediction of long-term graft deterioration.



Methods

• Data Sources: Transcriptomic data were obtained from GSE235813 (RNA-seq, n=37 urine-derived renal progenitor 

samples) and methylation data from GSE213458 (Illumina EPIC arrays, n=41 matched samples) from the Gene 

Expression Omnibus (GEO).

• RNA-seq Processing: Reads were normalized using variance stabilizing transformation, reduced via a stacked 

autoencoder, and modeled with a Random Forest classifier.

• Methylation Processing: IDAT files underwent noob normalization; CpGs were selected using mutual 

information and variance filtering, then modeled with SHAP-informed XGBoost.

• Late-Fusion Framework: Transcriptomic and methylomic predictions were integrated using logistic regression to 

generate the Long-Term Graft Risk Score (LTGRS).

• Model Evaluation: Used stratified 5-fold cross-validation and a 20% held-out test set, with AUROC and AUPRC 

as primary metrics.

• Clinical Correlation: LTGRS was associated with eGFR slope, Banff ci fibrosis, and microvascular 

inflammation scores (i, g, ptc).

• Feature Interpretability: Top transcriptomic and CpG contributors were identified using SHAP values, enabling 

mechanistic interpretation of stress-response and injury pathways.



Results Table 1. Baseline Clinical, Donor, and Sampling Characteristics of the Kidney Transplant Cohort
Characteristic Overall Cohort (n = 41)

Recipient age at transplant, years 43.2 ± 12.1

Female sex, n (%) 17 (41.5%)

Body mass index, kg/m² 24.6 (22.1–27.8)

Primary kidney disease: Diabetic nephropathy 11 (26.8%)

Primary kidney disease: Primary glomerulonephritis 16 (39.0%)

Primary kidney disease: Hypertensive nephrosclerosis 6 (14.6%)

Primary kidney disease: Other/unknown 8 (19.5%)

Donor type: Living donor 19 (46.3%)

Donor type: Deceased donor 22 (53.7%)

Donor age, years 47.5 ± 13.8

Cold ischemia time (DD), hours 11.2 (8.5–16.4)

HLA mismatch (0–6) 3.5 ± 1.3

PRA > 20%, n (%) 8 (19.5%)

Preformed DSA, n (%) 7 (17.1%)

Prior acute rejection, n (%) 9 (22.0%)

Time to urine sampling, months 5.7 (3.2–9.9)

eGFR at sampling, mL/min/1.73 m² 55.8 ± 16.9

Serum creatinine, mg/dL 1.40 ± 0.42

Urine PCR, g/g 0.38 (0.18–0.92)

Systolic BP, mmHg 132 ± 15

Diastolic BP, mmHg 79 ± 9

Induction: Basiliximab 24 (58.5%)

Induction: rATG 17 (41.5%)

Maintenance: TAC+MMF+steroid 33 (80.5%)

Maintenance: TAC+AZA+steroid 4 (9.8%)

Maintenance: mTOR-based 4 (9.8%)

Tacrolimus trough, ng/mL 6.3 ± 1.9

Protocol biopsy within ±3 months 36 (87.8%)

High-quality methylation data 41 (100%)

High-quality RNA-seq data 37 (90.2%)

Paired multi-omics data 37 (90.2%)

Outcome labels defined (no results) Stable vs deteriorating groups (counts only)

• The cohort is clinically heterogeneous, but 

well-balanced across key transplant variables; 

Living vs deceased donors, HLA mismatch, PRA 

>20%, induction regimens, and primary kidney 

diseases are fairly distributed, ensuring the 

LTGRS model is tested across clinically 

representative graft conditions.

• The cohort captures the critical ischemia-

reperfusion dimension that drives epigenomic 

injury; Cold ischemia time shows wide variation 

(median ~11 hours), and deceased donors make 

up more than half of the cohort



Results

• The multimodal LTGRS shows the highest predictive performance, with ROC and PR curves consistently above single-omics models.

• The fused model maintains the best sensitivity and precision in key clinical regions, enabling earlier and more reliable identification of 

high-risk patients.



Results

• LTGRS probabilities are markedly higher in deteriorating 

grafts: The deteriorating group clusters around LTGRS ≈ 

0.75, while stable patients center near ≈ 0.28, showing a clear 

separation of long-term risk levels.

• The distribution shapes confirm consistent biological 

signal: Deteriorating grafts show a tight high-probability 

distribution, while stable grafts display broader variability at 

lower LTGRS values, indicating different underlying graft 

states.

The Mann–Whitney U p < 0.0001 shows a highly significant separation, supporting LTGRS as a reliable early indicator of future graft decline.



Results

• NR3C1, CTLA4, and IL10RA methylation show the highest positive SHAP values, indicating that epigenetic disruption of glucocorticoid and 

immune-regulatory pathways is a major driver of elevated LTGRS risk.

• Reduced KLF9 and LINC01133 expression consistently shifts SHAP values toward higher risk, showing that weakened progenitor stress-

response and epithelial repair programs contribute strongly to poor long-term graft stability.

• TGF-β fibrosis loading and immune activation scores add additional positive SHAP impact, indicating that fibrotic remodeling and sustained 

immune signaling synergize with epigenomic alterations to push LTGRS upward.



Results

• LTGRS shows robust predictive accuracy in deceased-donor grafts, indicating that ischemia-reperfusion–driven epigenomic remodeling 

amplifies the model’s discriminative capability compared with living-donor grafts.

• Deceased-donor grafts show a higher overall LTGRS distribution, indicating stronger epigenomic stress signals captured by the model, 

even when sampled from urine-derived progenitor cells.

• Greater variability in deceased-donor LTGRS indicates more heterogeneous injury biology, matching clinical reality that ischemia-

reperfusion stress is more unpredictable in deceased grafts.



Results

• LTGRS shows a strong negative correlation with eGFR 

slope, indicating that higher LTGRS tightly aligns with 

faster long-term kidney function decline.

• LTGRS is positively linked with Banff fibrosis and 

microvascular injury scores, showing that higher risk 

scores reflect more advanced structural and 

inflammatory graft damage.

• LTGRS correlates strongly with NR3C1 

hypermethylation and inversely with KLF9/LINC01133 

expression, indicating that the risk signal captures 

underlying stress-response and progenitor-cell 

regulatory dysfunction.



Results

• High-LTGRS samples form a distinct UMAP cluster, indicating a shared transcriptomic program associated with long-term graft 

deterioration.

• The high-risk cluster is enriched for deceased-donor grafts, consistent with stronger ischemia, reperfusion–driven epigenomic stress 

signaling.

• Stable grafts remain tightly grouped in the low-risk transcriptomic region, showing that LTGRS cleanly maps onto biologically 

meaningful expression states.



Results

• NR3C1 hypermethylation shows the strongest effect, marking glucocorticoid-pathway repression as a central mechanism distinguishing 

high-risk grafts.

• Immune-regulatory CpGs (IL10RA, CTLA4) are consistently hypermethylated, supporting a shift toward impaired anti-inflammatory 

signaling in deteriorating grafts.

• Fibrosis-linked CpGs cluster among the significant hits, aligning the LTGRS signal with early microvascular injury and progressive 

interstitial fibrosis biology.



Results

• Higher NR3C1 methylation strongly tracks with more severe microvascular injury. The upward trend shows that cg13725483 

hypermethylation shows worsening biopsy damage (i + g + ptc), confirming it as a mechanistic injury marker.

• Deceased-donor grafts show a steeper slope, indicating amplified epigenomic stress. Compared with living donors, deceased-donor 

samples cluster higher for the same methylation level, indicating stronger ischemia–reperfusion–linked injury biology.

• Strong correlations across all groups validate methylation as a reliable pathology-aligned biomarker. Consistent correlations show that 

urinary progenitor epigenomic remodeling mirrors true histologic injury, reinforcing the clinical value of LTGRS.



Limitations

• Single-center cohort and modest sample size (n=41): Limits generalizability; findings require 

validation in larger, multi-center transplant populations.

• Cross-sectional urine sampling at biopsy time only: Cannot determine how early LTGRS or 

methylation changes emerge prior to clinical injury.

• Limited biopsy endpoints: Microvascular injury scoring (i + g + ptc) does not capture other 

pathology domains such as chronic scarring or subclinical immune activation.

• Multi-omics integration affected by donor heterogeneity: Ischemia-reperfusion severity varies 

widely between donors, introducing biological variability that may influence LTGRS patterns.

• Lack of mechanistic functional assays: Epigenomic signatures such as NR3C1 methylation are 

strongly associated but not experimentally confirmed as causal drivers of graft injury.



Conclusions

This study presents an integrative multi-omics ML model using urine-derived renal progenitor data to 

predict long-term graft outcomes. The approach offers an accurate, non-invasive, and interpretable 

tool for early risk stratification and long-term monitoring in kidney transplant recipients.
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