

Multi-Omics Machine Learning Model Predicts Long-Term Graft Outcome Based on Urinary Renal Progenitor Epigenomic Reprogramming After Kidney Transplantation

Prihantini Prihantini¹, Rifaldy Fajar¹, Sahnaz Vivinda Putri², and Rini Winarti³

¹AI-BioMedicine Research Group, IMCDS-BioMed Research Foundation, Indonesia,

²Health Management Laboratory, International University Semen Indonesia, Indonesia,

³Department of Biology, Yogyakarta State University, Indonesia.

The Integrated Mathematical,
Computational, and
Data Science for
BioMedicine Research
Foundation

Taipei, December 6, 2025.

Asian Pacific Congress of Nephrology 2025 in conjunction with 2025 Annual Meeting of the Taiwan Society of Nephrology

COI Disclosure

PRIHANTINI PRIHANTINI. J and Team.

The authors **have no financial conflicts of interest** to disclose concerning the presentation.

Background and Aim

- Kidney transplant failure is still driven largely by **chronic microvascular injury, fibrosis progression, and subtle immune activation** that often go undetected until irreversible damage has occurred.
- Current clinical markers such as **serum creatinine** and **eGFR** change **too late**, giving clinicians little warning before significant graft deterioration happens.
- **Protocol biopsies** can identify early pathology, but they are **invasive, costly, operator-dependent**, and unsuitable for frequent long-term monitoring.
- **Urine-derived progenitor cells** offer a promising, non-invasive window into graft biology, yet their potential to serve as an **early molecular sensor** of graft injury remains underexplored.
- **Epigenomic remodeling**, particularly **stress- and immune-related methylation shifts**, may provide earlier and more mechanistic signals of graft dysfunction compared with traditional biomarkers.
- Integrating these molecular stress signatures into a predictive framework could enable clinicians to **identify high-risk grafts earlier, personalize monitoring, and intervene before irreversible decline**.

Urinary cell transcriptomics and acute rejection in human kidney allografts

Akanksha Verma,^{1,2,3,4} Thangamani Muthukumar,^{5,6} Hua Yang,⁵ Michelle Lubetzky,^{5,6} Michael F. Cassidy,⁵ John R. Lee,^{5,6} Darshana M. Dadhania,^{5,6} Catherine Snopkowski,⁵ Divya Shankaranarayanan,^{5,6} Steven P. Salvatore,⁷ Vijay K. Sharma,⁵ Jenny Z. Xiang,⁸ Iwijn De Vlaeminck,⁹ Surya V. Seshan,⁷ Franco B. Mueller,⁵ Karsten Suhre,¹⁰ Olivier Elemento,^{1,2,3} and Manikkam Suthanthiran^{5,6}

REVIEW

The applications of DNA methylation as a biomarker in kidney transplantation: a systematic review

Iacopo Cristofori^{1,2,3*}, Tommaso Antonio Giacon^{4,5,6,7}, Karin Boer^{3,8}, Myrthe van Baardwijk^{1,2,3}, Flavia Neri⁴, Manuela Campisi⁵, Hendrikus J. A. N. Kimenai^{1,3}, Marian C. Clahsen - van Groningen^{2,3,9}, Sofia Pavanello³, Lucrezia Furian⁴ and Robert C. Minnee^{1,3}

Open Access

DNA methylation modulates allograft survival and acute rejection after renal transplantation by regulating the mTOR pathway

Chaohong Zhu^{1,2,3,4,5}, Wenyu Xiang^{1,2,3,4,5}, Bingjue Li^{1,2,3,4,5}, Yucheng Wang^{1,2,3,4,5}, Shi Feng^{1,2,3,4,5}, Cuili Wang^{1,2,3,4,5}, Ying Chen^{1,2,3,4,5}, Wenging Xie^{1,2,3,4,5}, Lihui Qu^{1,2,3,4,5}, Hongfeng Huang^{1,2,3,4,5}, Francesco Annunziata⁶, Suneetha Nunna⁶, Anna Krepelova⁶, Seyed Mohammad M Rasa⁶, Francesco Neri⁶, Jianghua Chen^{1,2,3,4,5,8}, Hong Jiang^{1,2,3,4,5,8}

Objective/Aim

This study aimed to develop a multi-omics machine learning model leveraging transcriptomic and methylation signatures from urine-derived renal progenitor cells to enable earlier and mechanistically grounded prediction of long-term graft deterioration.

Methods

- **Data Sources:** Transcriptomic data were obtained from **GSE235813** (RNA-seq, n=37 urine-derived renal progenitor samples) and methylation data from **GSE213458** (Illumina EPIC arrays, n=41 matched samples) from the Gene Expression Omnibus (GEO).
- **RNA-seq Processing:** Reads were normalized using **variance stabilizing transformation**, reduced via a **stacked autoencoder**, and modeled with a **Random Forest classifier**.
- **Methylation Processing:** IDAT files underwent **noob normalization**; CpGs were selected using **mutual information** and variance filtering, then modeled with **SHAP-informed XGBoost**.
- **Late-Fusion Framework:** Transcriptomic and methylomic predictions were integrated using **logistic regression** to generate the **Long-Term Graft Risk Score (LTGRS)**.
- **Model Evaluation:** Used **stratified 5-fold cross-validation** and a **20% held-out test set**, with AUROC and AUPRC as primary metrics.
- **Clinical Correlation:** LTGRS was associated with **eGFR slope**, **Banff ci fibrosis**, and **microvascular inflammation scores (i, g, ptc)**.
- **Feature Interpretability:** Top transcriptomic and CpG contributors were identified using **SHAP values**, enabling mechanistic interpretation of stress-response and injury pathways.

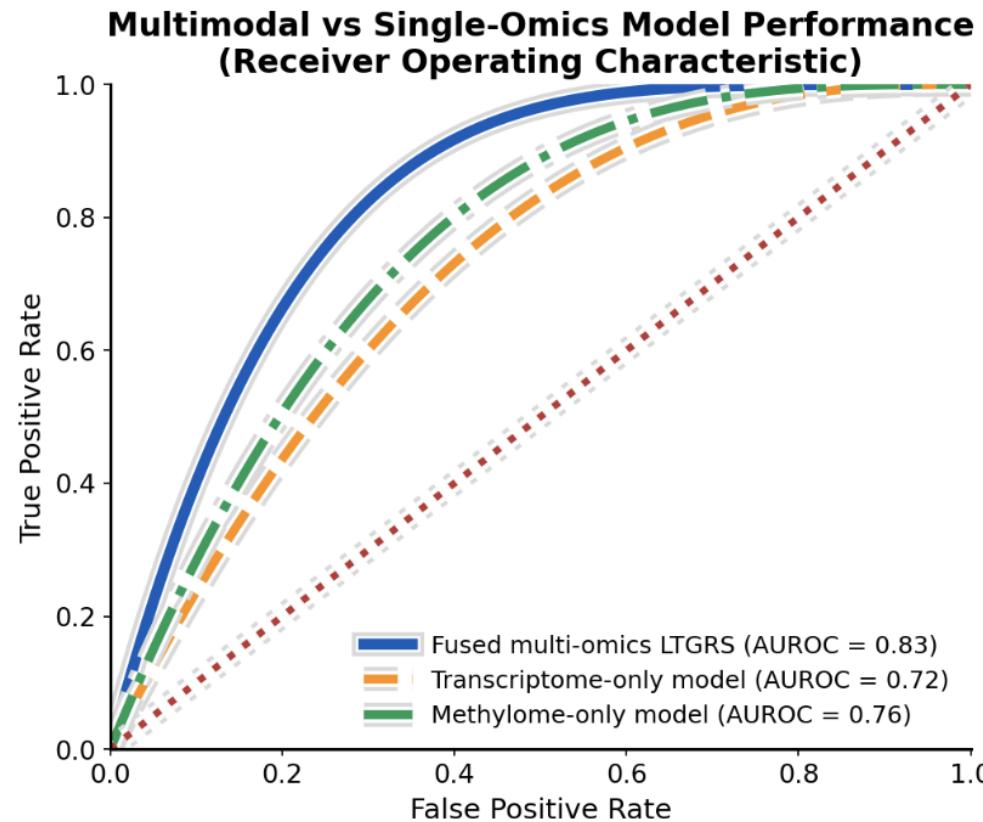
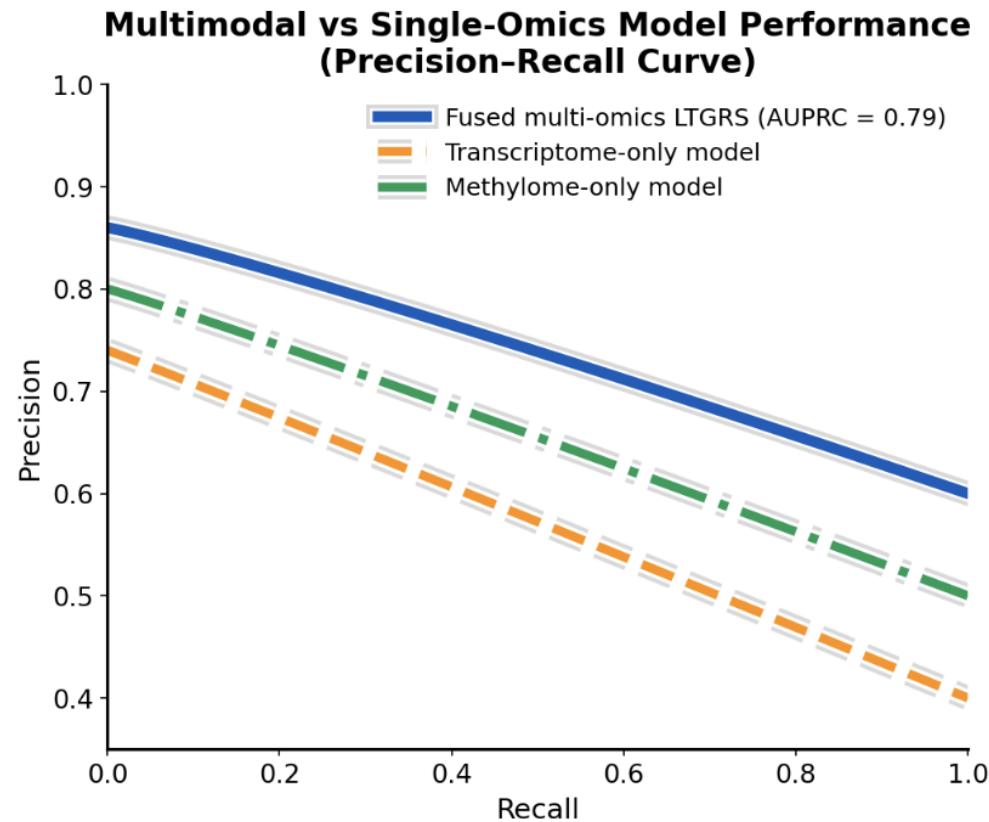
Results

Table 1. Baseline Clinical, Donor, and Sampling Characteristics of the Kidney Transplant Cohort

Characteristic	Overall Cohort (n = 41)
Recipient age at transplant, years	43.2 ± 12.1
Female sex, n (%)	17 (41.5%)
Body mass index, kg/m ²	24.6 (22.1–27.8)
Primary kidney disease: Diabetic nephropathy	11 (26.8%)
Primary kidney disease: Primary glomerulonephritis	16 (39.0%)
Primary kidney disease: Hypertensive nephrosclerosis	6 (14.6%)
Primary kidney disease: Other/unknown	8 (19.5%)
Donor type: Living donor	19 (46.3%)
Donor type: Deceased donor	22 (53.7%)
Donor age, years	47.5 ± 13.8
Cold ischemia time (DD), hours	11.2 (8.5–16.4)
HLA mismatch (0–6)	3.5 ± 1.3
PRA > 20%, n (%)	8 (19.5%)
Preformed DSA, n (%)	7 (17.1%)
Prior acute rejection, n (%)	9 (22.0%)
Time to urine sampling, months	5.7 (3.2–9.9)
eGFR at sampling, mL/min/1.73 m ²	55.8 ± 16.9
Serum creatinine, mg/dL	1.40 ± 0.42
Urine PCR, g/g	0.38 (0.18–0.92)
Systolic BP, mmHg	132 ± 15
Diastolic BP, mmHg	79 ± 9
Induction: Basiliximab	24 (58.5%)
Induction: rATG	17 (41.5%)
Maintenance: TAC+MMF+steroid	33 (80.5%)
Maintenance: TAC+AZA+steroid	4 (9.8%)
Maintenance: mTOR-based	4 (9.8%)
Tacrolimus trough, ng/mL	6.3 ± 1.9
Protocol biopsy within ±3 months	36 (87.8%)
High-quality methylation data	41 (100%)
High-quality RNA-seq data	37 (90.2%)
Paired multi-omics data	37 (90.2%)
Outcome labels defined (no results)	Stable vs deteriorating groups (counts only)

- The cohort is clinically heterogeneous, but well-balanced across key transplant variables; Living vs deceased donors, HLA mismatch, PRA >20%, induction regimens, and primary kidney diseases are fairly distributed, ensuring the LTGRS model is tested across clinically representative graft conditions.
- The cohort captures the critical ischemia-reperfusion dimension that drives epigenomic injury; Cold ischemia time shows wide variation (median ~11 hours), and deceased donors make up more than half of the cohort

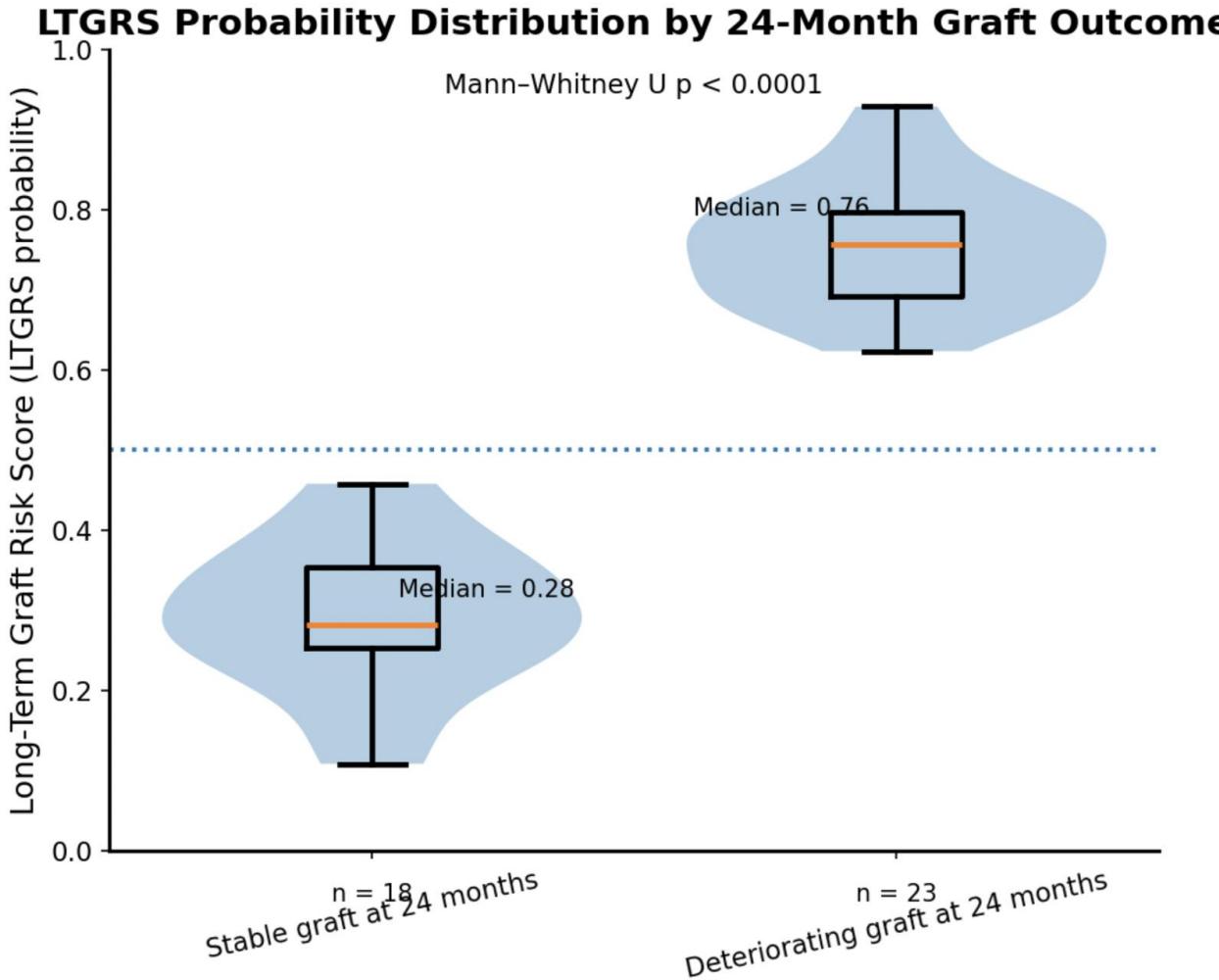
Results



- The multimodal LTGRS shows the highest predictive performance, with ROC and PR curves consistently above single-omics models.
- The fused model maintains the best sensitivity and precision in key clinical regions, enabling earlier and more reliable identification of high-risk patients.

Results

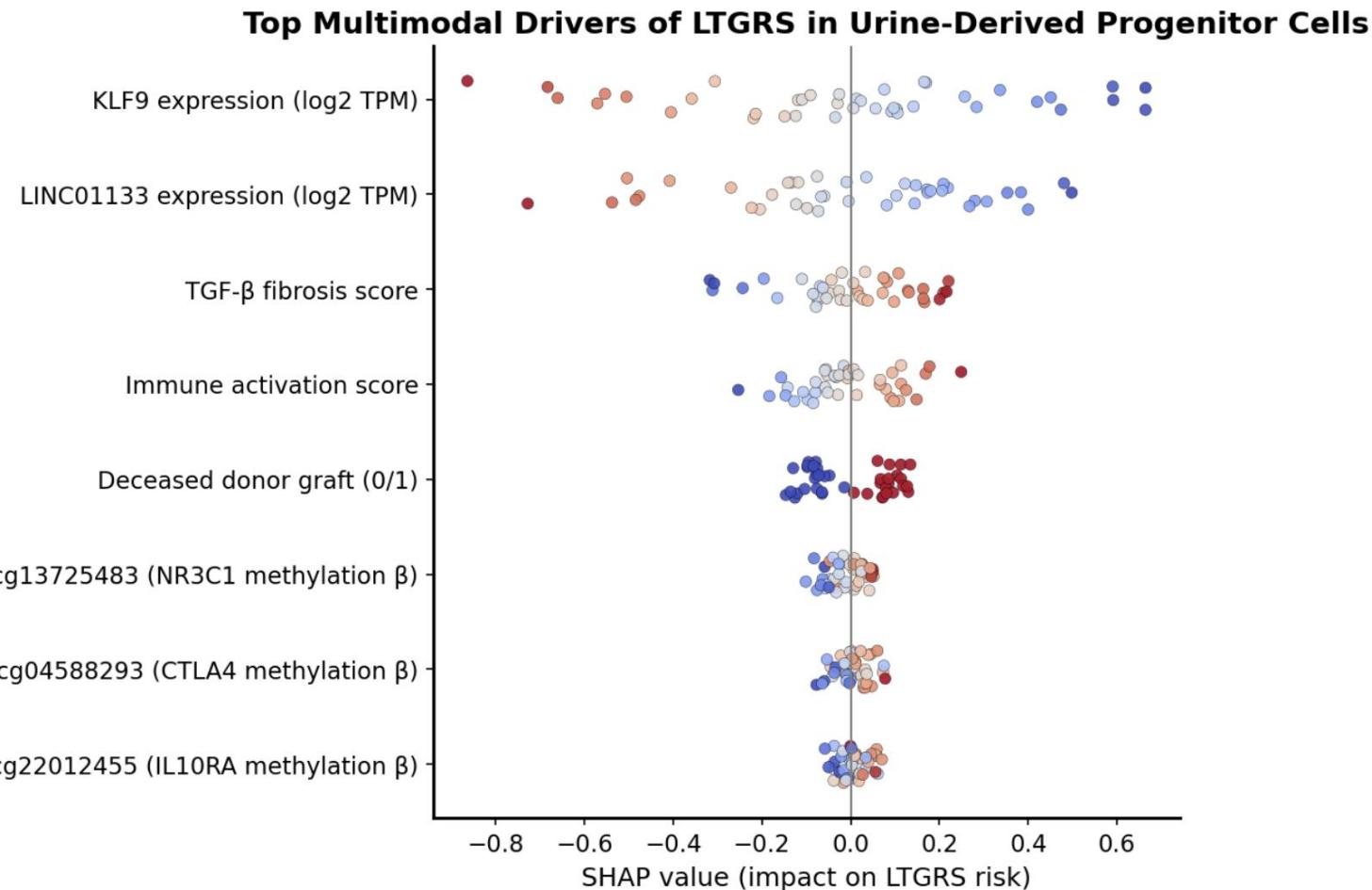
Mann-Whitney U p-value: 2.9005409119525844e-08



- **LTGRS probabilities are markedly higher in deteriorating grafts:** The deteriorating group clusters around $LTGRS \approx 0.75$, while stable patients center near ≈ 0.28 , showing a clear separation of long-term risk levels.
- **The distribution shapes confirm consistent biological signal:** Deteriorating grafts show a tight high-probability distribution, while stable grafts display broader variability at lower LTGRS values, indicating different underlying graft states.

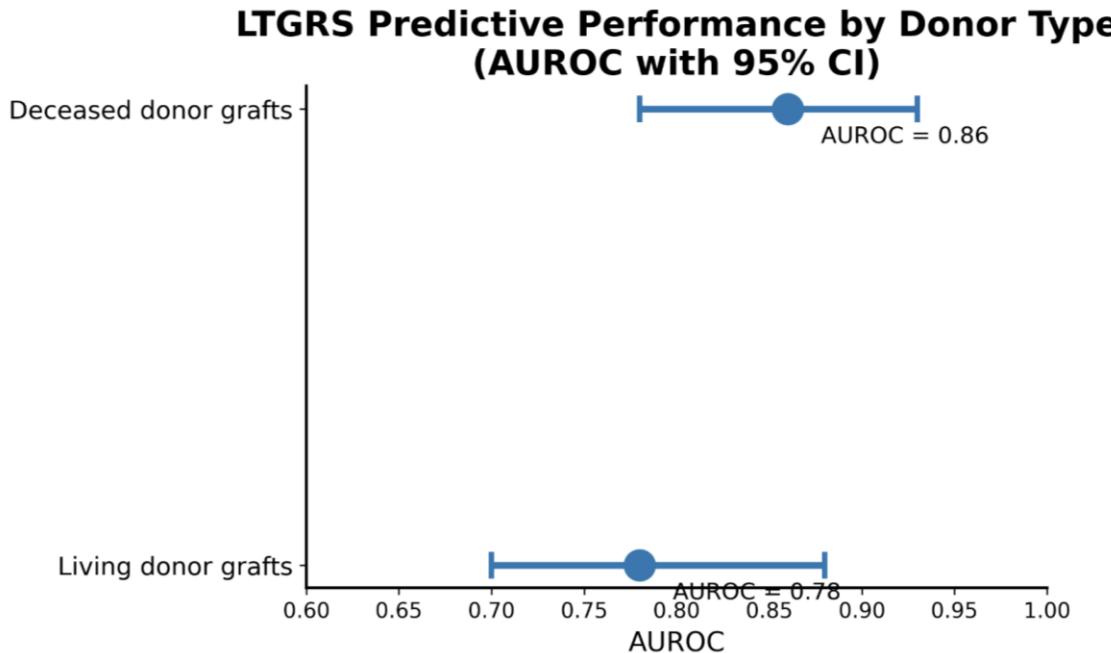
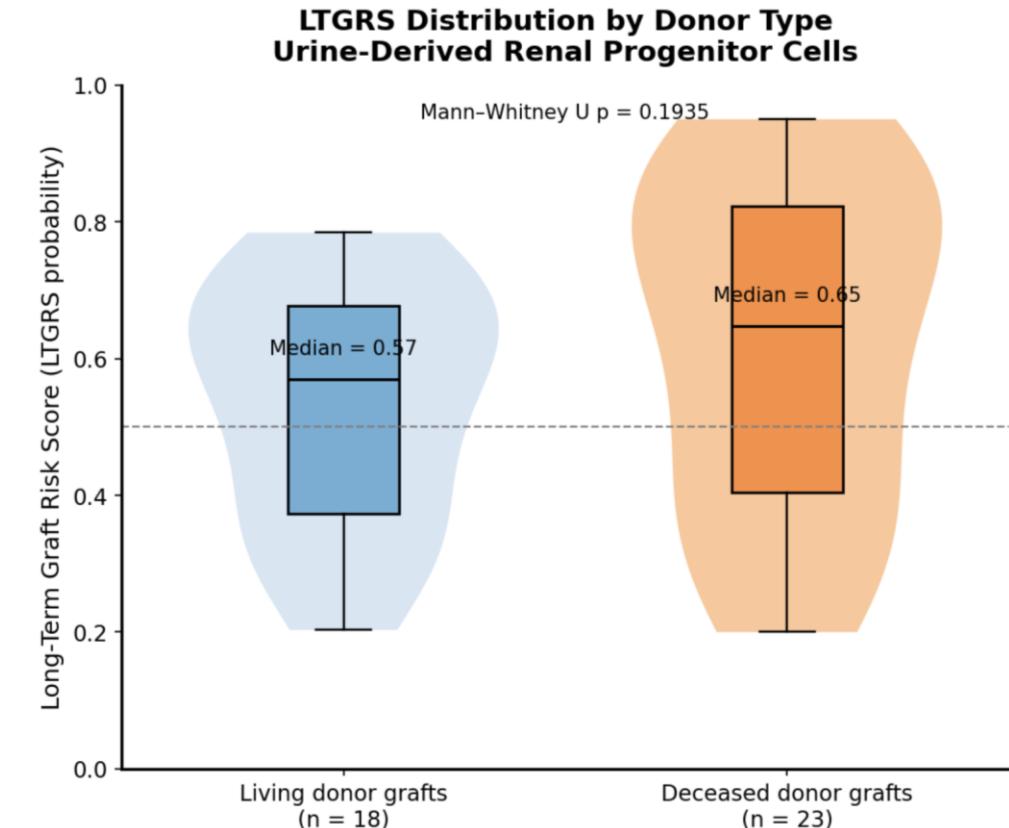
The Mann-Whitney U p < 0.0001 shows a highly significant separation, supporting LTGRS as a reliable early indicator of future graft decline.

Results



- NR3C1, CTLA4, and IL10RA methylation show the highest positive SHAP values, indicating that epigenetic disruption of glucocorticoid and immune-regulatory pathways is a major driver of elevated LTGRS risk.
- Reduced KLF9 and LINC01133 expression consistently shifts SHAP values toward higher risk, showing that weakened progenitor stress-response and epithelial repair programs contribute strongly to poor long-term graft stability.
- TGF-β fibrosis loading and immune activation scores add additional positive SHAP impact, indicating that fibrotic remodeling and sustained immune signaling synergize with epigenomic alterations to push LTGRS upward.

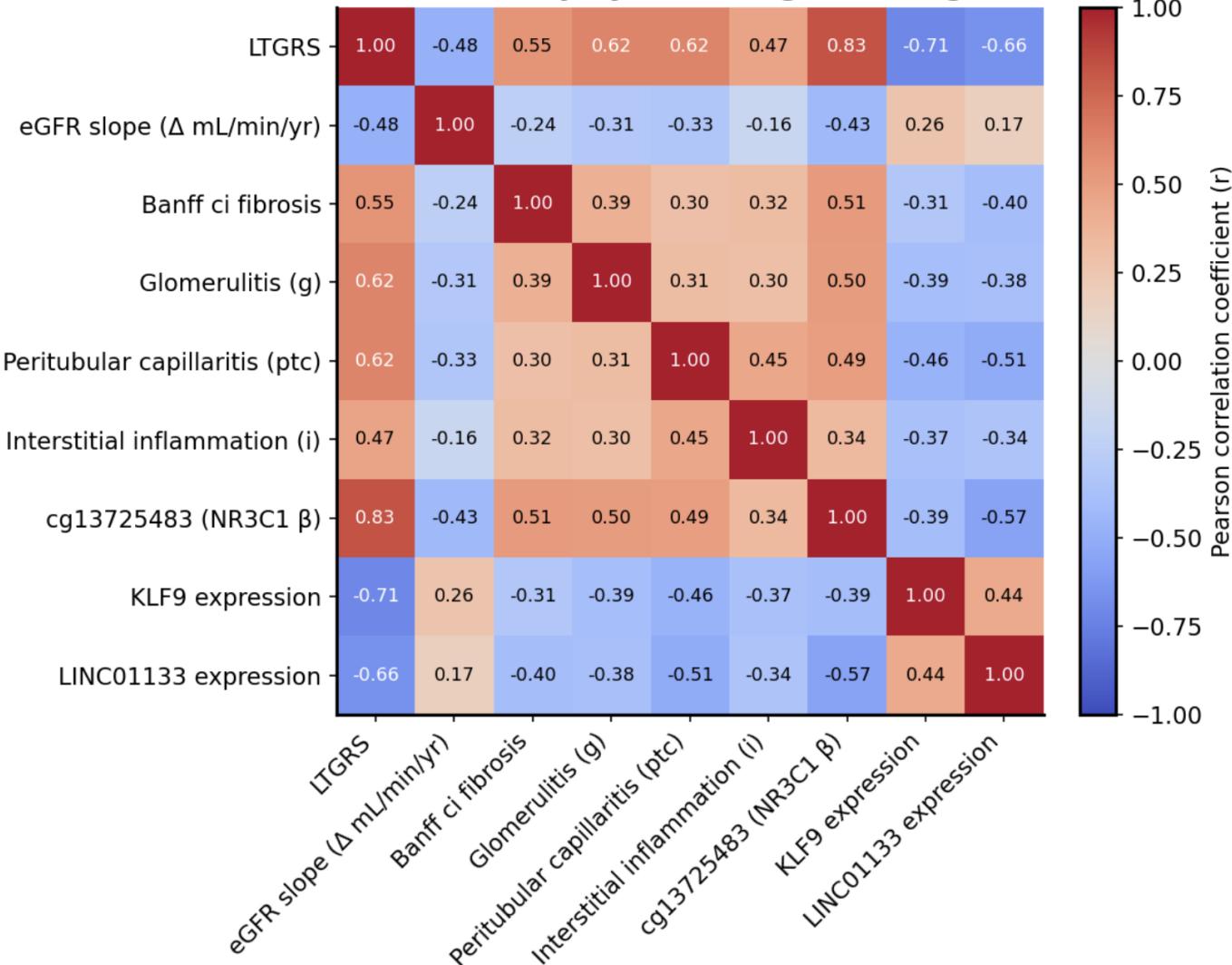
Results



- LTGRS shows robust predictive accuracy in deceased-donor grafts, indicating that ischemia-reperfusion–driven epigenomic remodeling amplifies the model’s discriminative capability compared with living-donor grafts.
- **Deceased-donor grafts show a higher overall LTGRS distribution**, indicating stronger epigenomic stress signals captured by the model, even when sampled from urine-derived progenitor cells.
- **Greater variability in deceased-donor LTGRS** indicates more heterogeneous injury biology, matching clinical reality that ischemia-reperfusion stress is more unpredictable in deceased grafts.

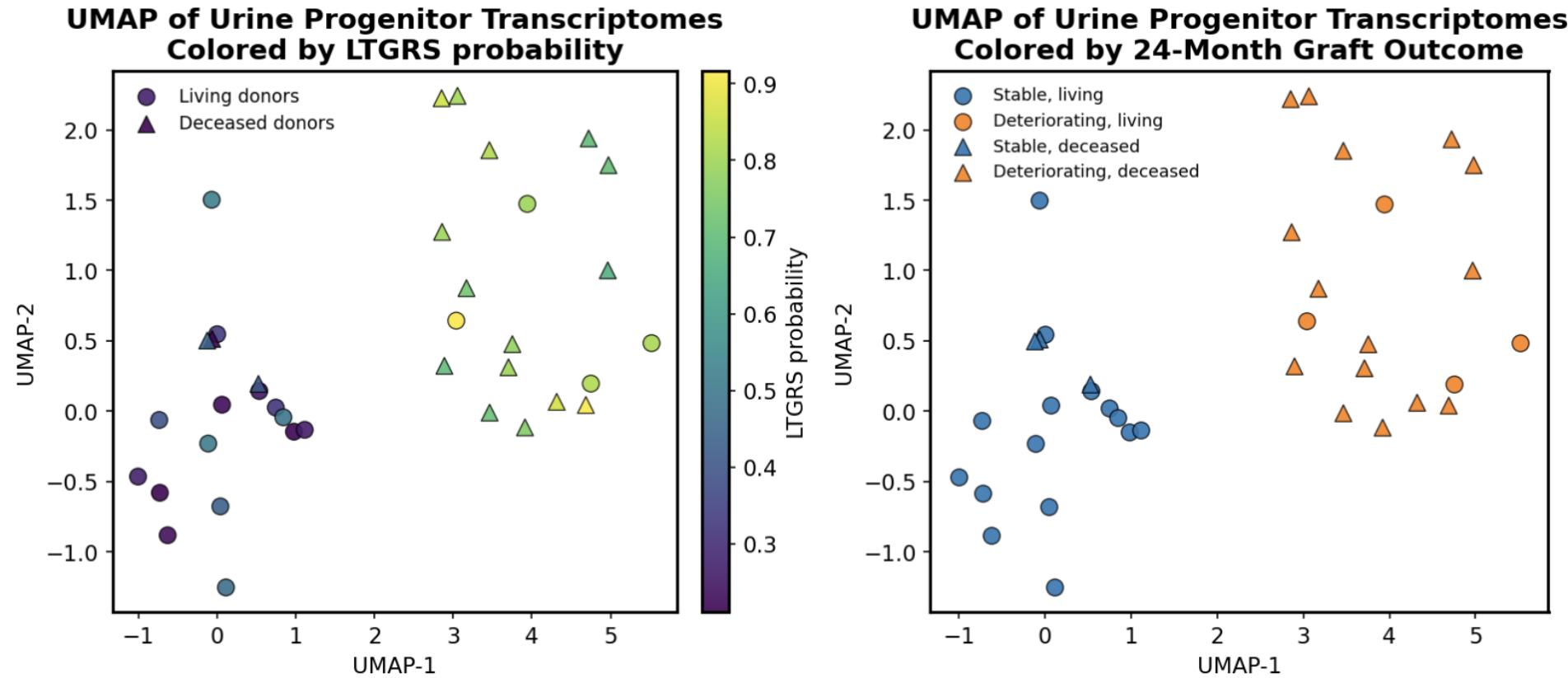
Results

Correlation Map of LTGRS with Renal Function, Fibrosis, Microvascular Injury, and Progenitor Signatures



- LTGRS shows a strong negative correlation with eGFR slope, indicating that higher LTGRS tightly aligns with faster long-term kidney function decline.
- LTGRS is positively linked with Banff fibrosis and microvascular injury scores, showing that higher risk scores reflect more advanced structural and inflammatory graft damage.
- LTGRS correlates strongly with NR3C1 hypermethylation and inversely with KLF9/LINC01133 expression, indicating that the risk signal captures underlying stress-response and progenitor-cell regulatory dysfunction.

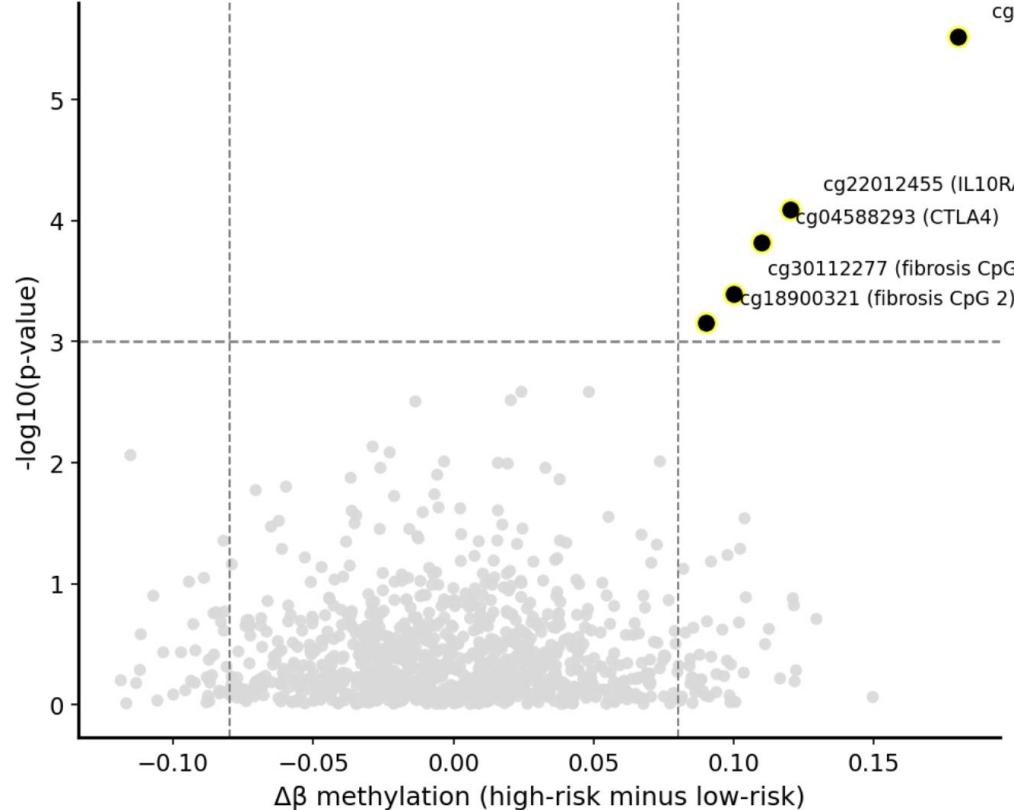
Results



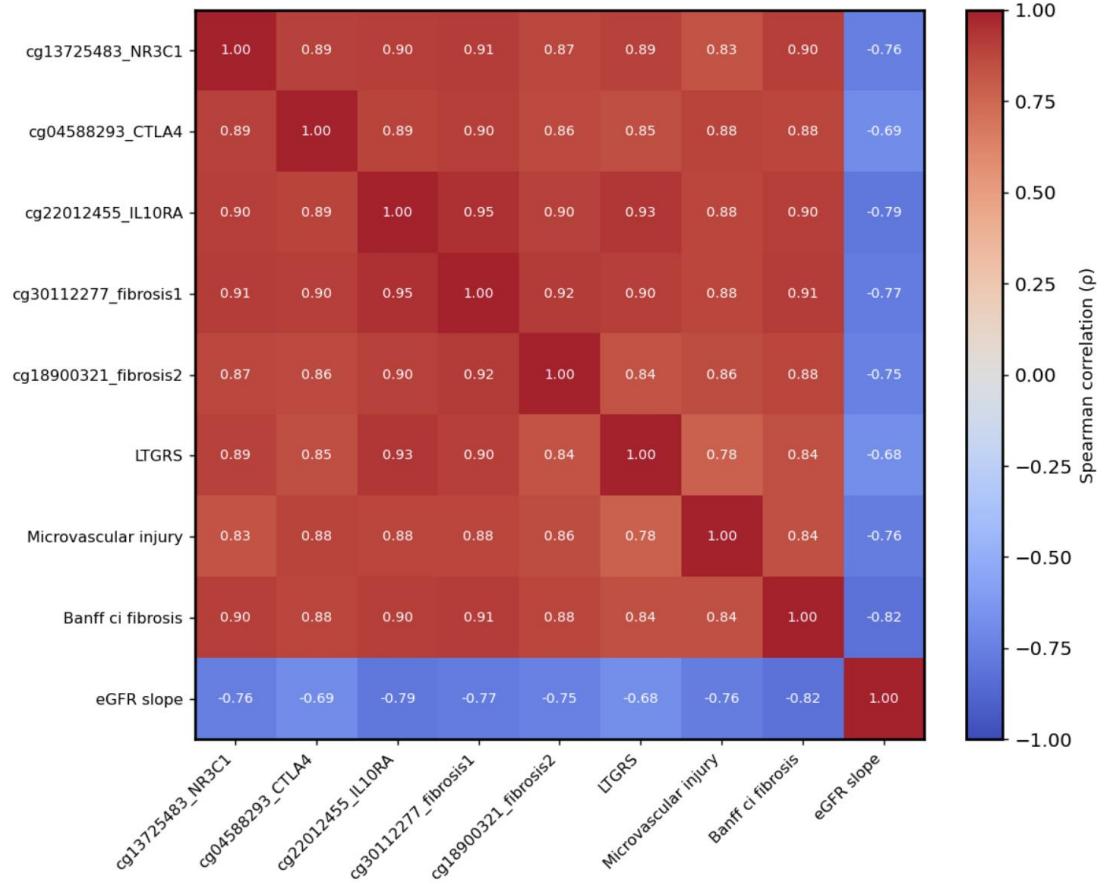
- High-LTGRS samples form a distinct UMAP cluster, indicating a shared transcriptomic program associated with long-term graft deterioration.
- The high-risk cluster is enriched for deceased-donor grafts, consistent with stronger ischemia, reperfusion–driven epigenomic stress signaling.
- Stable grafts remain tightly grouped in the low-risk transcriptomic region, showing that LTGRS cleanly maps onto biologically meaningful expression states.

Results

Differential CpG Methylation Between High- and Low-LTGRS Grafts Highlighting NR3C1 and Immune/Fibrosis-Linked Loci

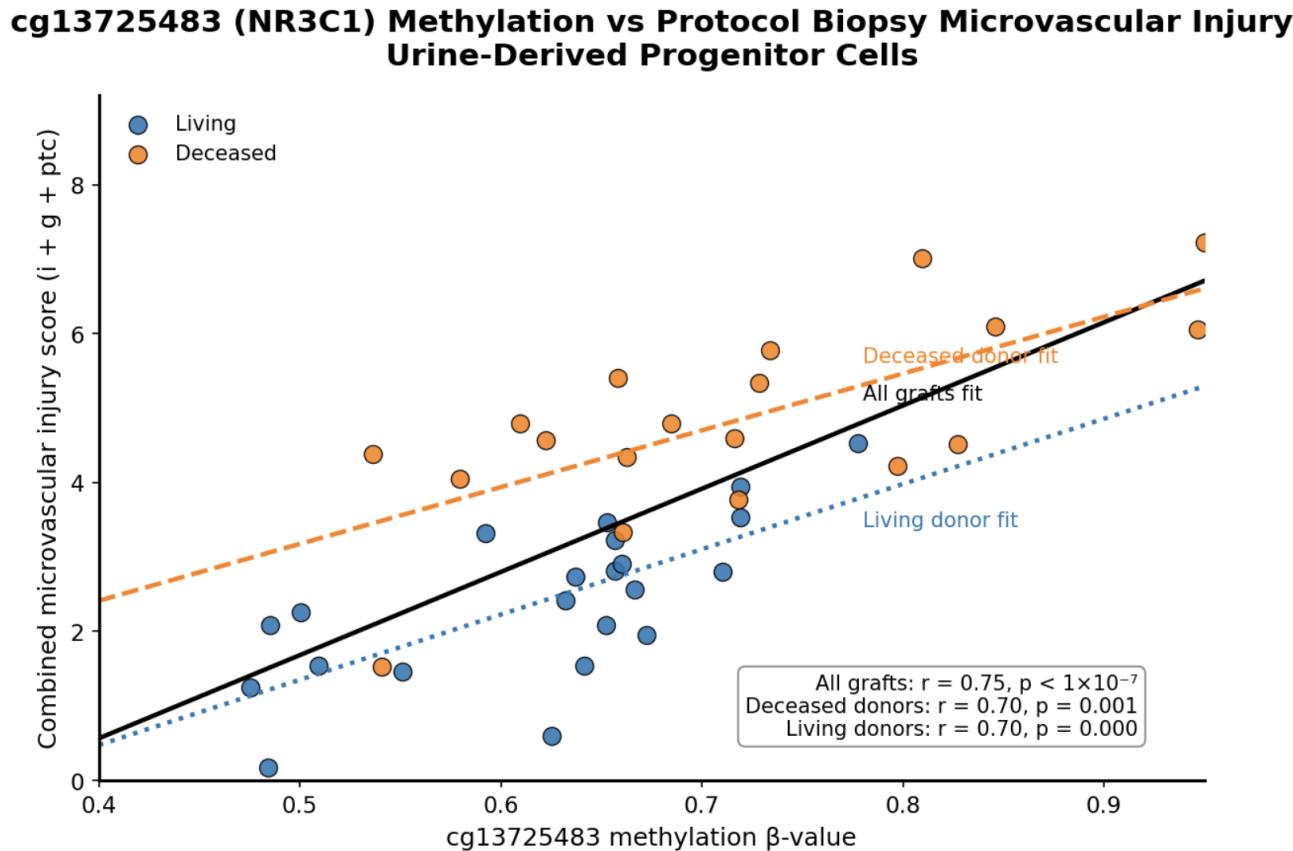


CpG Methylation Correlation Map Showing Alignment with LTGRS, Biopsy Microvascular Injury and Functional Decline



- NR3C1 hypermethylation shows the strongest effect, marking glucocorticoid-pathway repression as a central mechanism distinguishing high-risk grafts.
- Immune-regulatory CpGs (IL10RA, CTLA4) are consistently hypermethylated, supporting a shift toward impaired anti-inflammatory signaling in deteriorating grafts.
- Fibrosis-linked CpGs cluster among the significant hits, aligning the LTGRS signal with early microvascular injury and progressive interstitial fibrosis biology.

Results



- **Higher NR3C1 methylation strongly tracks with more severe microvascular injury.** The upward trend shows that cg13725483 hypermethylation shows worsening biopsy damage (i + g + ptc), *confirming it as a mechanistic injury marker*.
- **Deceased-donor grafts show a steeper slope, indicating amplified epigenomic stress.** Compared with living donors, deceased-donor samples cluster higher for the same methylation level, indicating stronger ischemia–reperfusion–linked injury biology.
- **Strong correlations across all groups validate methylation as a reliable pathology-aligned biomarker.** Consistent correlations show that urinary progenitor epigenomic remodeling mirrors true histologic injury, reinforcing the clinical value of LTGRS.

Limitations

- **Single-center cohort and modest sample size (n=41):** Limits generalizability; findings require validation in larger, multi-center transplant populations.
- **Cross-sectional urine sampling at biopsy time only:** Cannot determine how early LTGRS or methylation changes emerge prior to clinical injury.
- **Limited biopsy endpoints:** Microvascular injury scoring (i + g + ptc) does not capture other pathology domains such as chronic scarring or subclinical immune activation.
- **Multi-omics integration affected by donor heterogeneity:** Ischemia-reperfusion severity varies widely between donors, introducing biological variability that may influence LTGRS patterns.
- **Lack of mechanistic functional assays:** Epigenomic signatures such as NR3C1 methylation are strongly associated but not experimentally confirmed as causal drivers of graft injury.

Conclusions

This study presents an integrative multi-omics ML model using urine-derived renal progenitor data to predict long-term graft outcomes. The approach offers an accurate, non-invasive, and interpretable tool for early risk stratification and long-term monitoring in kidney transplant recipients.

Thank you!

