

STRATEGIES OF CKD PREVENTION IN SINGAPORE

A/Prof Jason Choo MBBS, MMed, FAMS, FRCP, FASN

Senior Consultant, Department of Renal Medicine, Singapore General Hospital
Medical Director, The National Kidney Foundation, Singapore
Clinical Associate Professor, Duke-NUS Medical School
President, Singapore Society of Nephrology

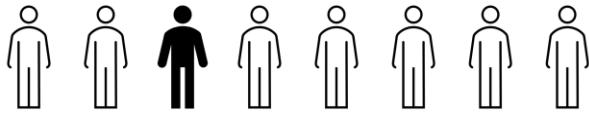
Singapore Society of Nephrology

DISCLOSURE OF CONFLICT OF INTERESTS

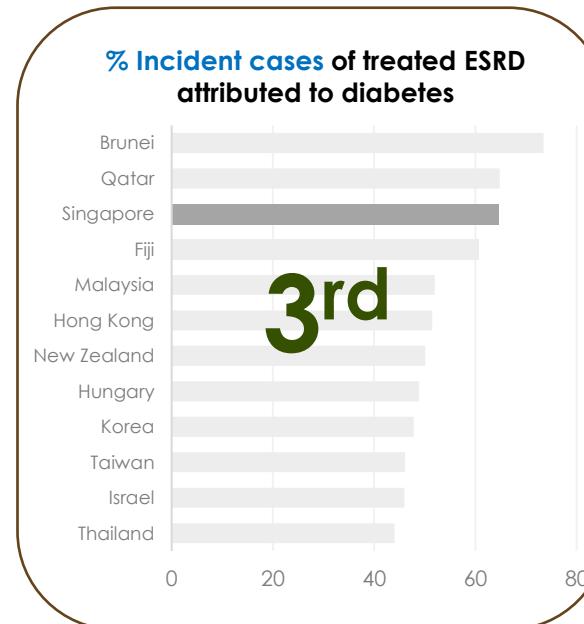
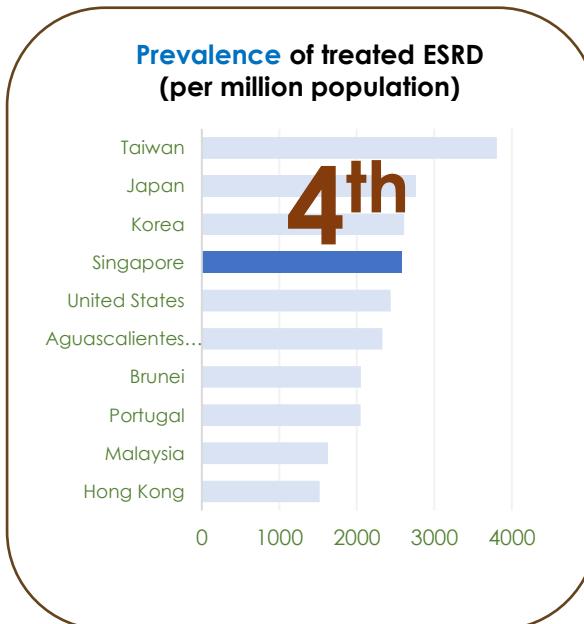
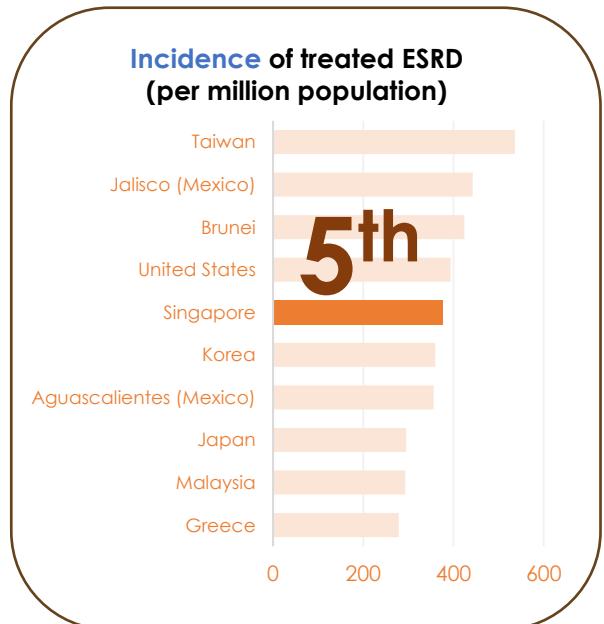
- Consultancies & Advisory Boards
 - Boehringer Ingelheim, Novartis, Bayer, AstraZeneca, Pfizer, Nitto Denko ATC, GSK
- Speaker
 - Abbott, Bayer, AstraZeneca, Boehringer Ingelheim
- Steering Committees
 - AstraZeneca, Boehringer Ingelheim, Baxter
- Scientific Grant Fundings
 - NMRC Singapore

AGENDA

- CKD in Singapore: Landscape & Burden
- National CKD Registry
- Prevention Strategies
- Community Screening & Early Detection
- Integrated Clinical Management
- Challenges & Future Directions


AGENDA

- **CKD in Singapore: Landscape & Burden**
- **National CKD Registry**
- Prevention Strategies
- Community Screening & Early Detection
- Integrated Clinical Management
- Challenges & Future Directions

KIDNEY LANDSCAPE

CKD affects 1 in 7 adults in Singapore

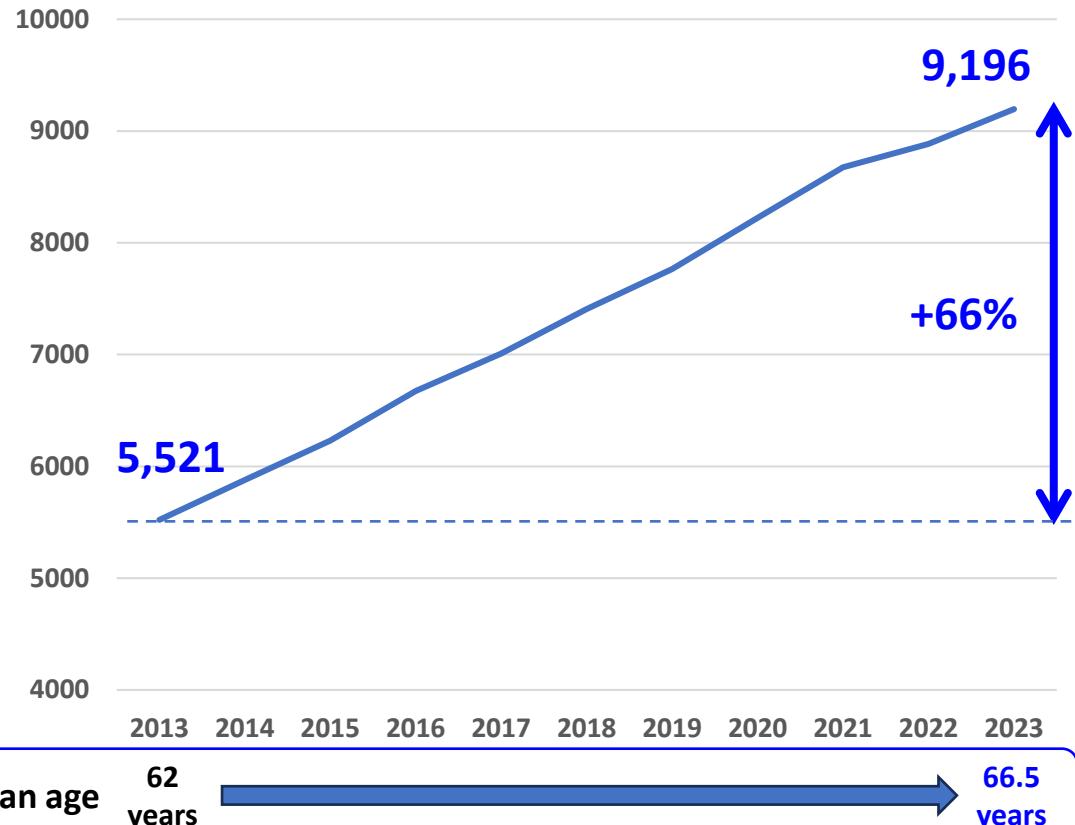
Based on National Population Health Survey 2024

(USRDS Annual Report 2024)

About **6** new kidney failure cases every day

About **2 in 3** are due to diabetes

More than **9,000** patients on dialysis


Over **\$300mil** spent on dialysis treatment annually

There were 9,196 dialysis patients as of Dec 2023 (Singapore Renal Registry Annual Report 2023)


KEY TRENDS (2013 – 2023)

+66% increase in dialysis patients over a decade

- **Prevalent Numbers** HD dominant (~86.9% prevalence)

- **Incidence and Prevalence**

NATIONAL EPIDEMIOLOGY, PROGNOSTICATION AND HEALTH RELATED IMPACT OF CKD

Scope
<ul style="list-style-type: none"> Retrospective registry <ul style="list-style-type: none"> CKD stage G1-5 patients 2014-2022
<p>Build a centralised CKD analytics platform with harmonised and unified cross-cluster data for analysis and scalable for data-sharing</p>

Main Aims

- Map out the journey of CKD patients within Singapore (prevalence/incidence data)**
- Determine the prevalence/incidence of complications associated with CKD across the continuum of stage 1-5, or ESKD**
 - Death (all causes), MACE
 - Hyperkalemia, hyperphosphatemia, anaemia, admissions for volume overload
- Ultimately determine management gaps which can be filled with ongoing tracking of clinical outcomes**
 - Quality Improvement initiatives
 - Data Science analytics

Compared to NEPHRIC Vs CURE-CKD
Adult cohort – pending more data

NEPHRIC			
CKD Stage	Avg eGFR	Patient Count	%
G1-2	≥60	62,588	53.0
G3a	45-59	28,819	24.4
G3b	30-44	17,950	15.2
G4	15-29	6,726	5.7
G5	<15	1,975	1.7
Total		118,058	100

Adults >21 years
Total patients with at least 1 Creatinine: 556,774

CURE-CKD			
CKD Stage	Avg eGFR	Patient Count	%
G1-2	≥60	137,784	22.7
G3a	45-59	226,693	37.4
G3b	30-44	100,239	16.5
G4	15-29	39,125	6.5
G5	<15	20,328	3.4
Not categorised		81,895	13.5
Total		606,064	100

Tuttle KR et al. JAMA Netw Open. 2019;2(12)

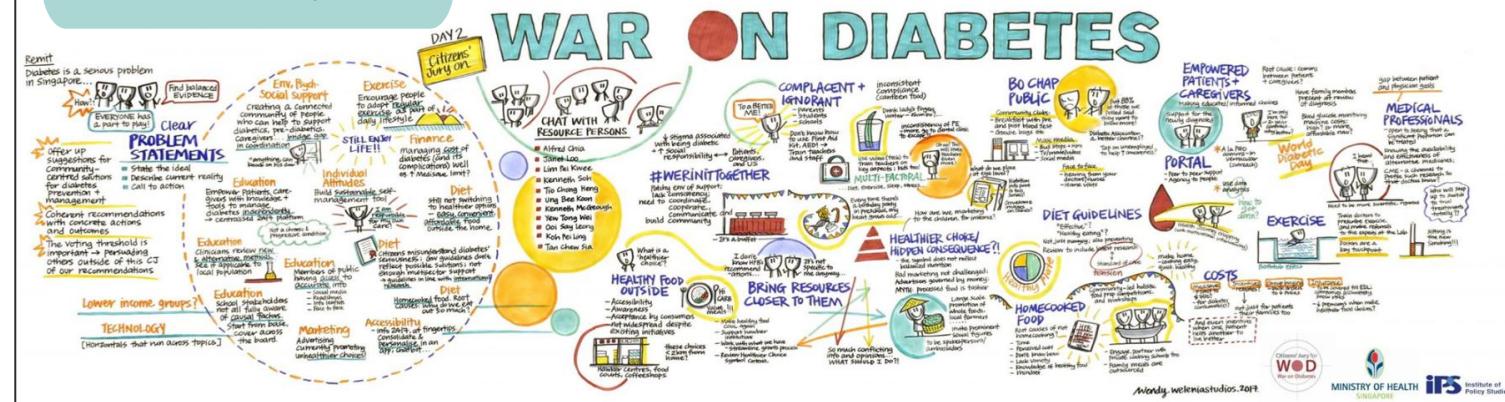
Work in progress

Unpublished	GFR categories (mL/min/1.73 m ²)	Prognosis of CKD by GFR and albuminuria categories				Unpublished	
		A1 Normal-mildly increased <3mg/mmol	A2 Moderately increased 3-30mg/mmol	A3 Severely increased >30 mg/mmol	No UACR value/Abnormal		
	G1 Normal to high	≥90	655 (0.6%)	19,572 (16.6%)	1,808 (1.5%)	3,211 (2.7%)	25,246 (21.4%)
	G2 Mildly decreased	60-90	799 (0.7%)	28,879 (24.5%)	3,934 (3.3%)	3,730 (3.2%)	37,342 (31.6%)
	G3a Mildly to moderately decreased	45-59	4071 (3.4%)	9,626 (8.2%)	2,500 (2.1%)	12,622 (10.7%)	28,819 (24.4%)
	G3b Moderately to severely decreased	30-44	1540 (1.3%)	4,671 (4%)	2,096 (1.8%)	9,643 (8.2%)	17,950 (15.2%)
	G4 Severely decreased	15-29	167 (0.1%)	1,040 (0.9%)	864 (0.7%)	4,655 (3.9%)	6,726 (5.7%)
	G5 Kidney failure	<15	86 (0.07%)	86 (0.05%)	86 (0.01%)	1,821 (1.5%)	1,975 (1.67%)
		Total	7,318 (6.2%)	63,846 (54.1%)	11,212 (9.5%)	35,682 (30.2%)	118,058 (100%)

Unpublished

AGENDA

- CKD in Singapore: Landscape & Burden
- National CKD Registry
- **Prevention Strategies**
- Community Screening & Early Detection
- Integrated Clinical Management
- Challenges & Future Directions

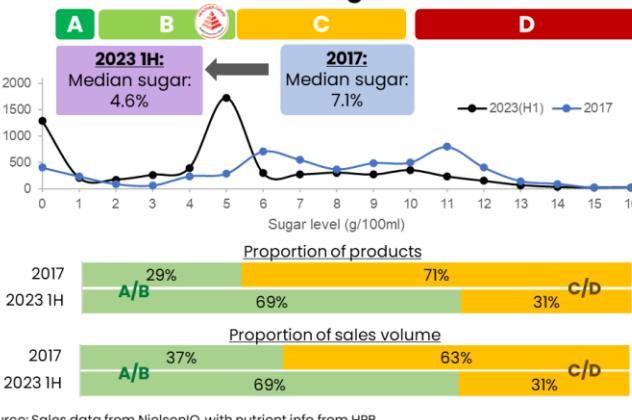


TACKLING ROOT CAUSES: PRIMORDIAL & PRIMARY PREVENTION

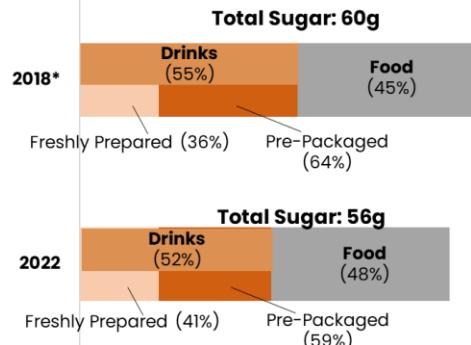
Risk Factors

- Diabetes in adults: 14.9% (2021)
- Obesity in adults: 10.5% (2020)
- Obesity in children: 16% (2022)

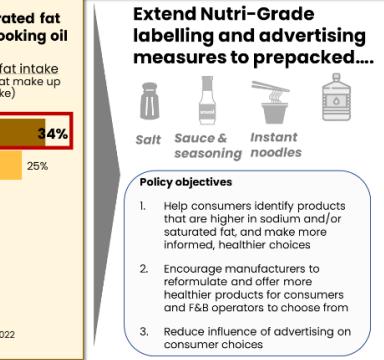
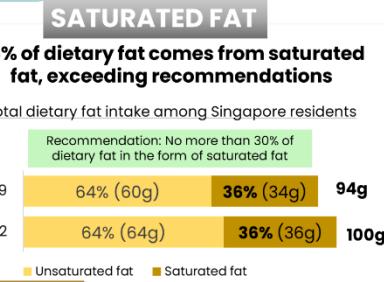
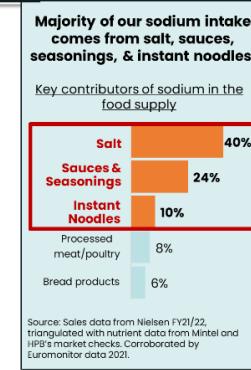
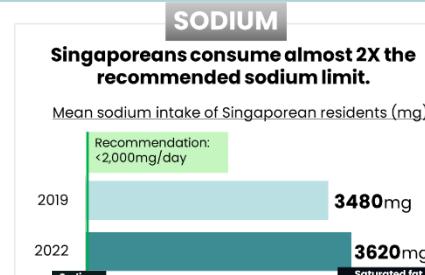
National Response



Beverage Product Reformulation



Nutri-Grade labelling and advertising measures for beverages were announced in 2020, and implemented for prepacked beverages in 2022 and freshly prepared beverages in 2023.





Industry-wide reformulation to reduce sugar in beverages

Total sugar intake has come down

Nutritional Health Survey 2022

Policy Measures

1

- Ramp up voluntary front-of-store labelling to highlight stalls offering healthier dishes (lower-sodium ingredients, healthier oils).
- Serves as a nudge to influence consumer behaviour

Community & Consumer Engagement

2

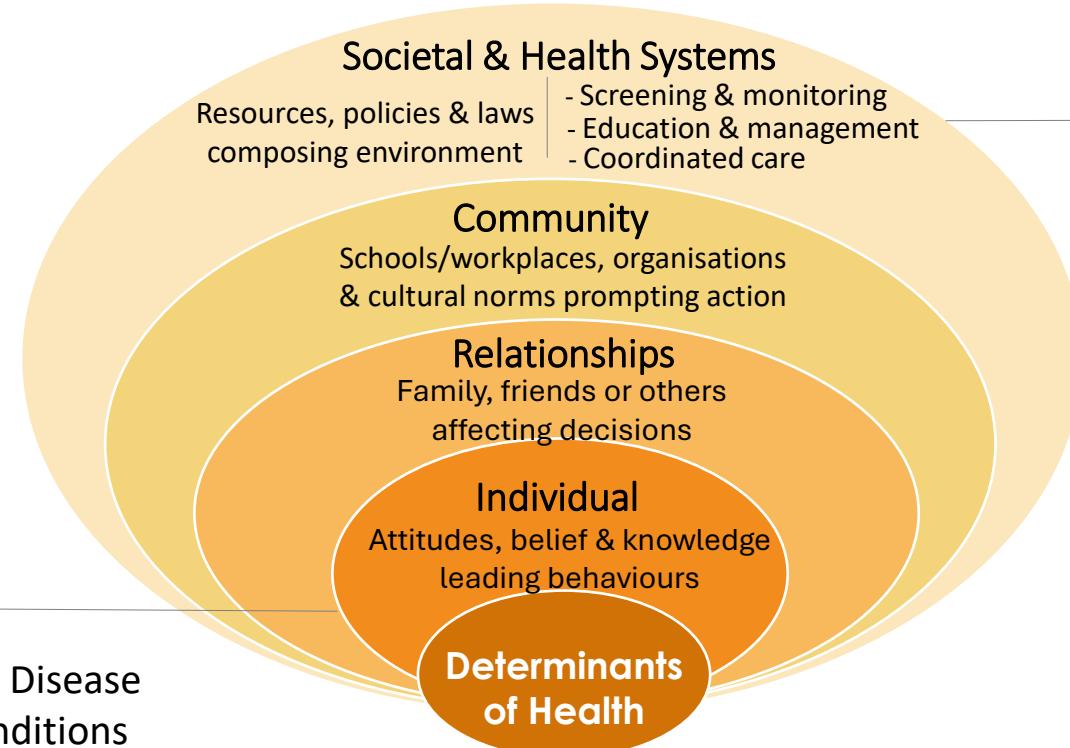
- Step up public education for consumers and F&B operators on the need to reduce sodium and saturated fat, and to promote the 'Less Salt, More Taste' message

3

Industry Partnerships

- "Healthier Ingredient Promotion Programme" to educate hawkers on the need to reduce sodium, provide samples and encourage switching to lower-sodium ingredients
- Increase engagements with distributors to increase supply of healthier ingredients from manufacturers to F&B operators

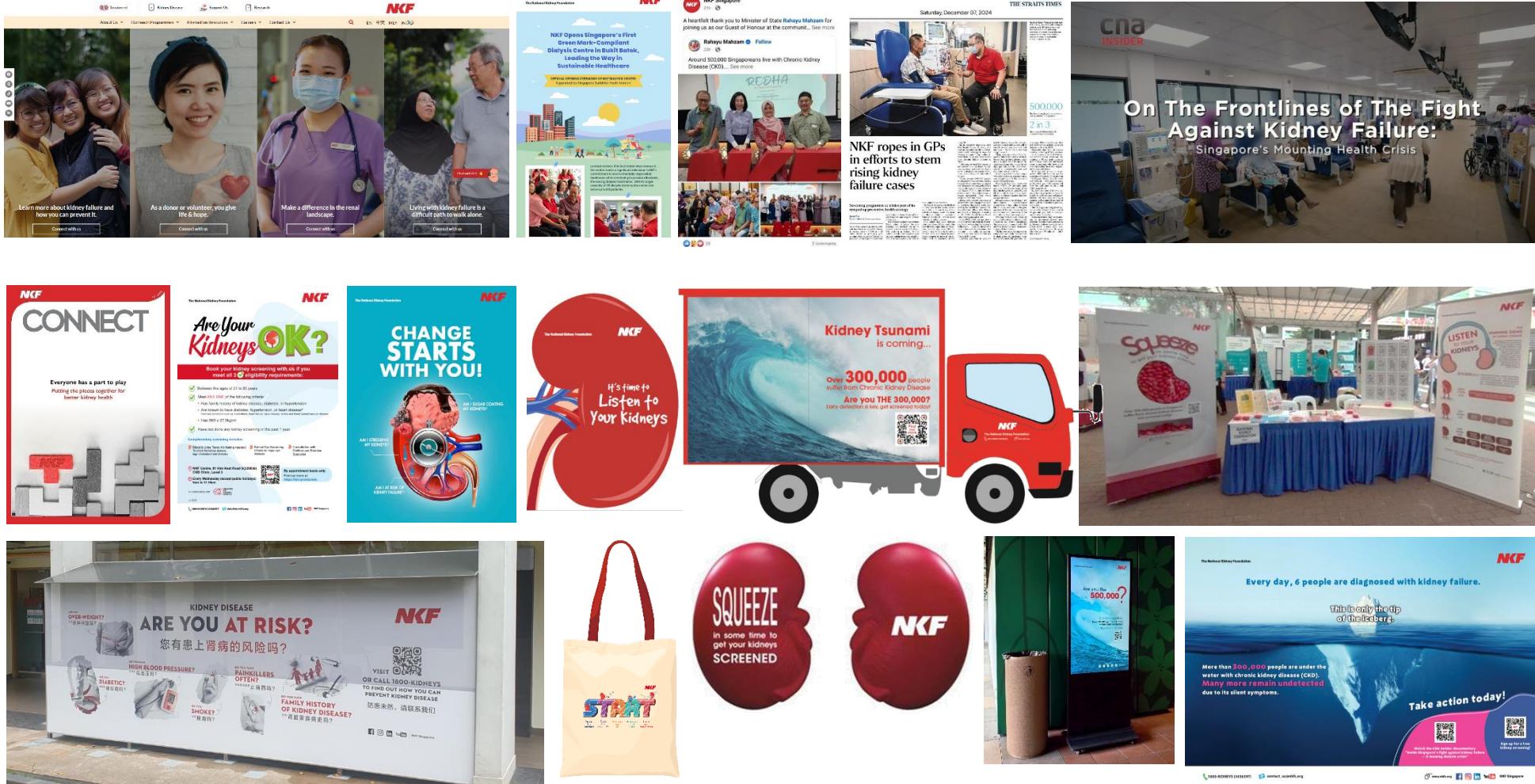
Policy objectives


- Help consumers make informed choices
- Encourage industry reformulation
- Reduce advertising influence on unhealthy products

PROMOTE KIDNEY HEALTH THROUGH AN INTEGRATED, COMMUNITY-BASED, SOCIALLY-DRIVEN APPROACH

Current Situation:

Public awareness of Chronic Kidney Disease (CKD) remains low compared to conditions like diabetes



Current Situation:

CKD management often starts late, with many cases diagnosed at advanced stages

TRANSFORM KIDNEY HEALTH THROUGH SUSTAINED EDUCATION & ENGAGEMENT

NKF

Digital Media

- Website
- Social Media
- News Channels
- eDM
- ePosters
- ePublications

Traditional / Offline Media

- Brochures
- Posters
- Banners
- Vehicle Decals
- Publications
- Swags

HARNESSING THE POWER OF MEDIA

NKF

A14 | SINGAPORE

A silent killer

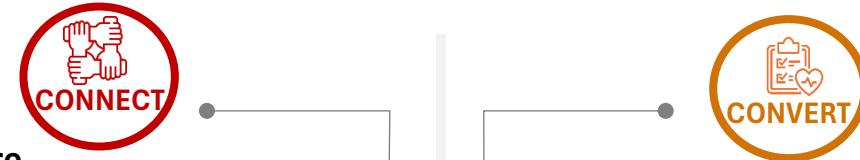
Half of kidney failure cases in S'pore could have been prevented, says doctor

Measurable Outcomes

1	Blurb on front page
2	5-fold increase in kidney screening interest
3	> 900 QR codes scanned
4	Strong online traction – 157 likes, 81 shares, 25 comments

AGENDA

- CKD in Singapore: Landscape & Burden
- National CKD Registry
- Prevention Strategies
- **Community Screening & Early Detection**
- Integrated Clinical Management
- Challenges & Future Directions



STRENGTHEN ADVOCACY AND INTERVENTION TO IMPROVE LONG-TERM HEALTH OUTCOMES

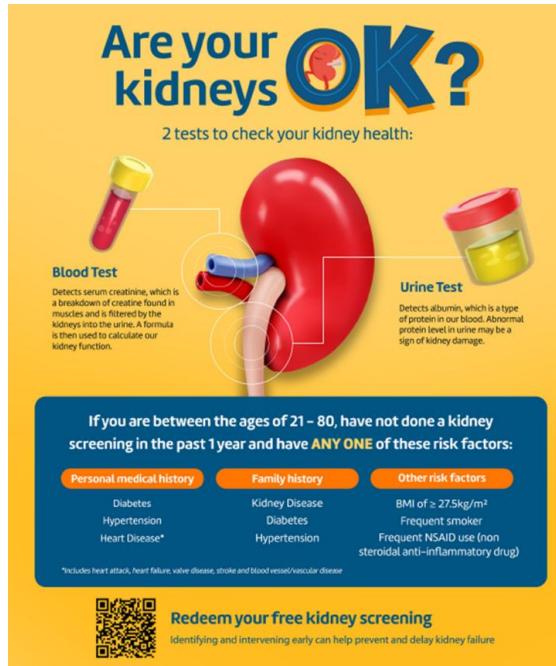
Approach:

1. **Early education** fosters healthier, more aware generations, creating a ripple effect of knowledge within families
2. **Build advocacy** through partnerships with community and corporates
3. **Work with MMO leaders** to deliver culturally tailored messaging for greater impact

Approach:

1. **Garner GPs and healthcare clusters support** to ramp up CKD screenings to enable accessible screening
2. **Support GPs** on early detection and management
3. **Enhance kidney health literacy and reduce follow-up barriers**, including cost and navigation of care pathways

Strengthen alliance, influence, awareness and interventions



SCREENING RESULTS & RISK STRATIFICATION

NKF Kidney Screening Programme
Launched in March 2024 at 237 GP clinics

Aim: Raise kidney health awareness and integrate kidney function checks into routine care

Kidney Screening Distribution (March 2024 – June 2025)

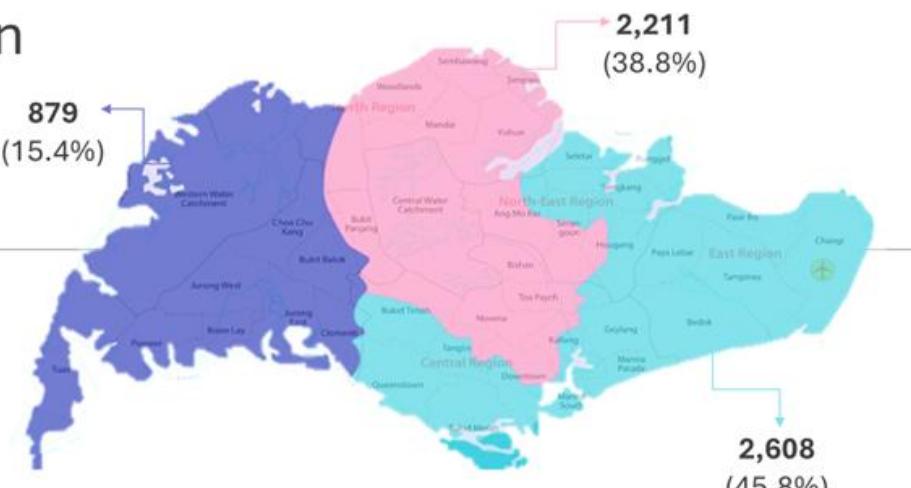
5,698 at-risk individuals

Average Age

54

Gender

2,710 (47.6%) 2,988 (52.4%)

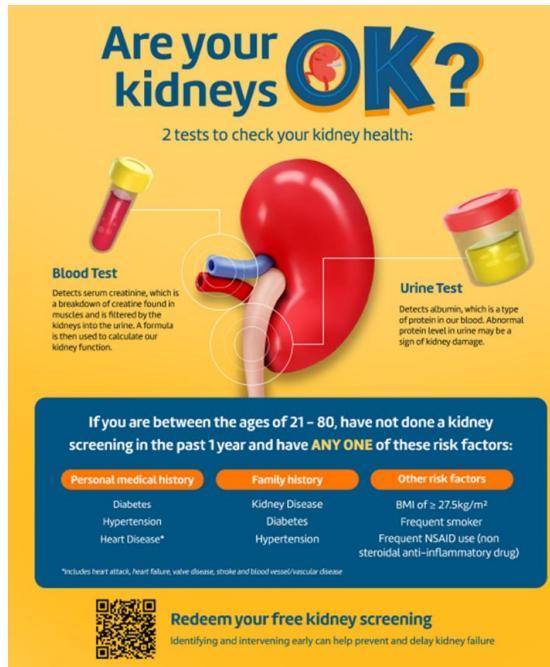

Race Distribution

Chinese 4,294 (75.4%)

Indian 363 (6.4%)

Malay 744 (13.1%)

Others 297 (5.2%)


Unpublished

SCREENING RESULTS & RISK STRATIFICATION

NKF Kidney Screening Programme
Launched in March 2024 at 237 GP clinics

Aim: Raise kidney health awareness and integrate kidney function checks into routine care

Abnormalities Distribution (March 2024 – June 2025)

891 out of 5,698 screened

Average Age

60

Gender

466
(52%)

425
(48%)

Race Distribution

Chinese

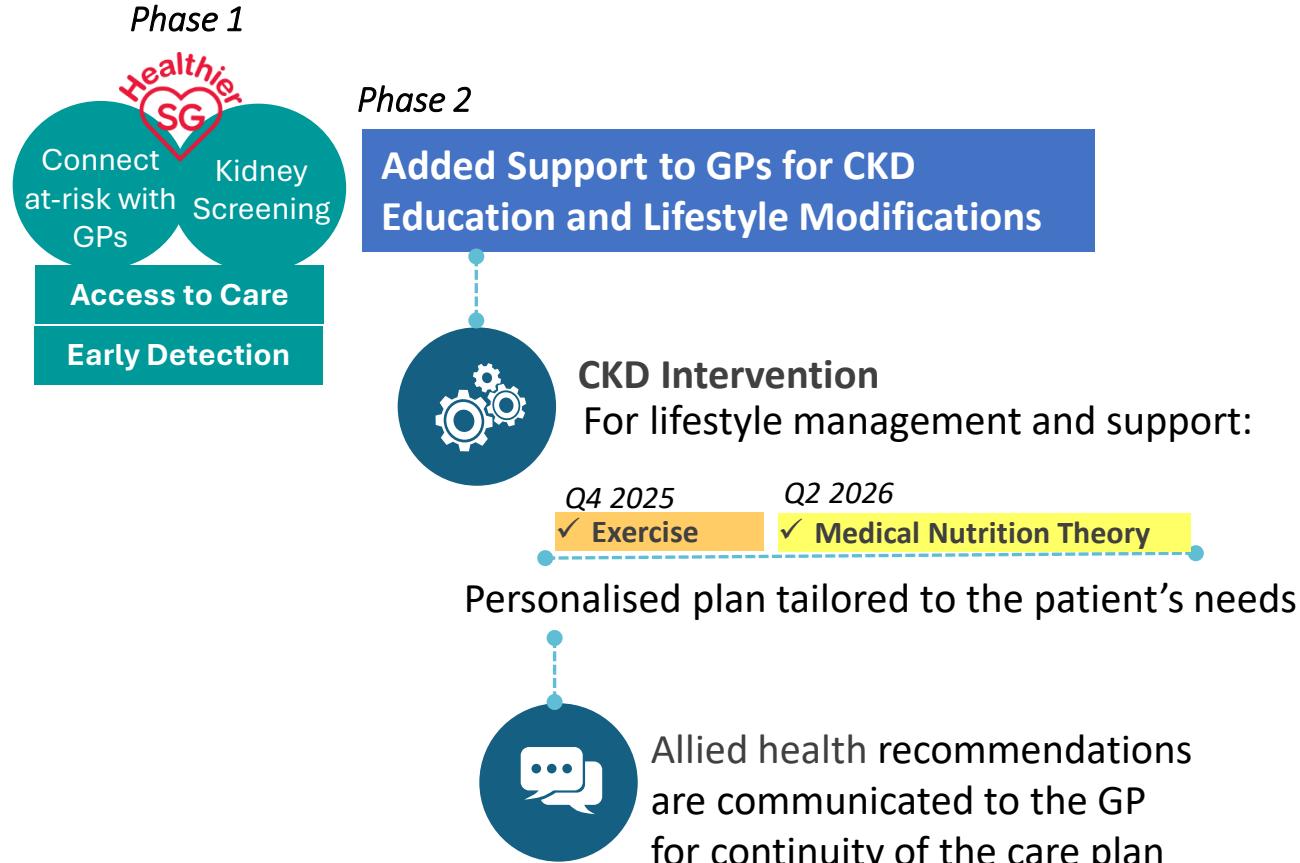
635 (71.2%)

Indian

47 (5.3%)

Malay

163 (18.3%)


Others

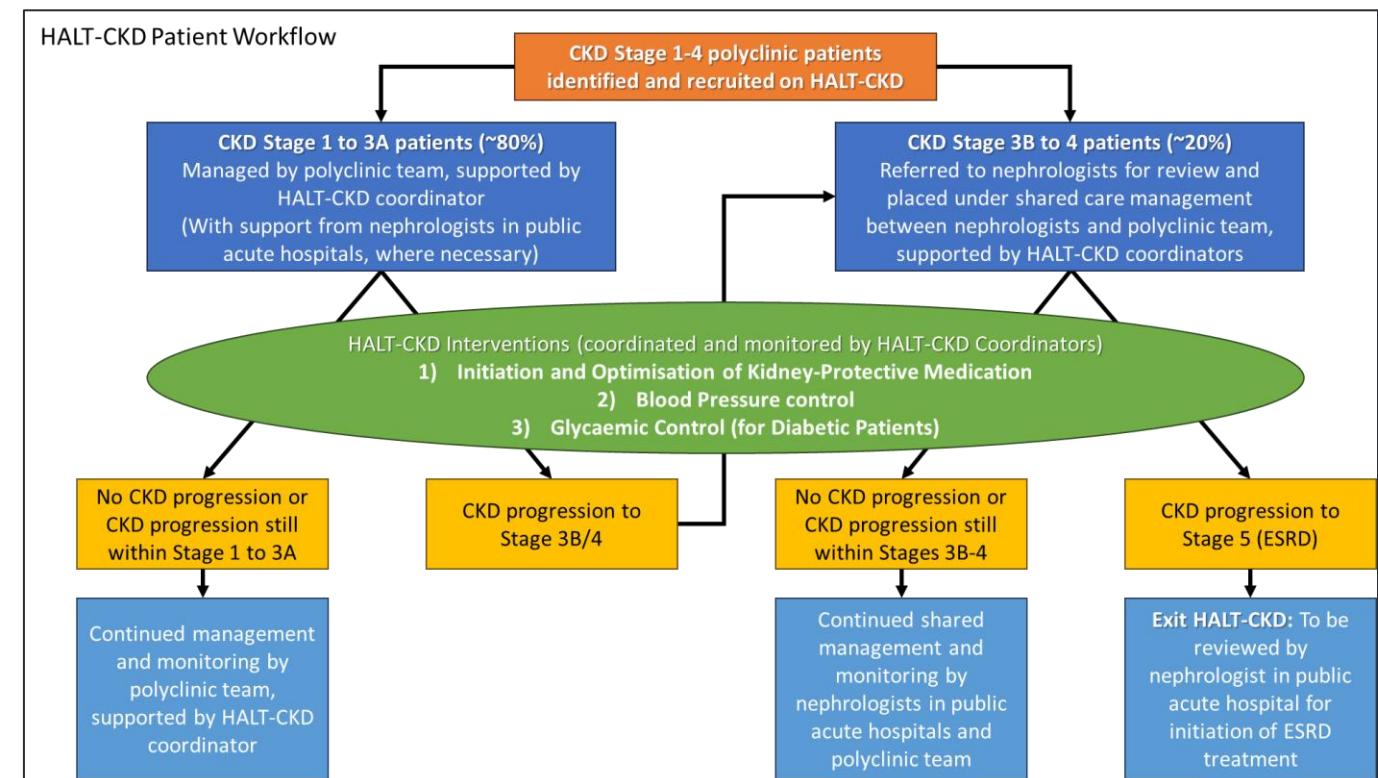
46 (5.2%)

Risk factors among moderate to very high-risk: male gender, Malay ethnicity, obesity, history of cardiovascular disease, diabetes, hypertension, hereditary kidney disease, and gout.

Phase 2: Allied Health Support for Holistic Management

AGENDA

- CKD in Singapore: Landscape & Burden
- National CKD Registry
- Prevention Strategies
- Community Screening & Early Detection
- **Integrated Clinical Management**
- Challenges & Future Directions


HOLISTIC APPROACH IN LOWERING & TRACKING CKD (HALT-CKD) PROGRAMME

National CKD Prevention Programme implemented in 2017

Aim: Prevent and delay the progression of CKD to kidney failure

Progress & Focus:

- **Phase I (from 2019): Medical interventions** (medication optimisation, BP/sugar control) across all hospitals and polyclinics
- **Phase II (from 2020/2021): Lifestyle interventions** (exercise, diet, salt reduction, smoking cessation) rolled out in polyclinics
- **Data & Tools:** CKD risk prediction models developed and embedded in national health records
- **Current focus:** Align with Healthier SG, update KPIs (including SGLT2i use), integrate new clinical guidelines

HALT-CKD

Eligibility	All patients with CKD G1–G3A <80 years old <ul style="list-style-type: none"> CKD G1 & G2: Requires 2 abnormal UACR/UPCR ≥12 weeks apart Add “chronic renal failure” as visit diagnosis and problem list
Lifestyle modification	<ul style="list-style-type: none"> Refer all patients aged <80 years for HALT-CKD counselling Stop smoking, refer smoking cessation clinic by pharmacist Encourage weight loss, consider dietitian review if BMI >23 kg/m², weight management clinic if BMI >27.5 kg/m² Counsel on low salt (<2 g/day) diet Counsel on low protein diet (<0.8 g/kg/day) and refer dietitian for CKD G3B patients Advice on 150 mins/week of moderate intensity exercise
Maximise ACEi/ARB	Optimise dosages until one of these endpoints below: <ol style="list-style-type: none"> Maximal recommended or tolerated dose Normoalbuminuria + achieve BP target When starting or increasing ACEi/ARB, order ACEi/ARB panel in 2–4 weeks with CM review
Optimise BP	<ol style="list-style-type: none"> <130/80 mmHg for ALL patients <140/90 mmHg for older patients, high fall risk, multiple comorbidities
Optimise HbA1c	<ol style="list-style-type: none"> ≤7%: Age ≤75 years ≤8%: Age 76–80 years
Optimise LDL-C	<ol style="list-style-type: none"> <1.8 mmol/L for DM patients <2.6 mmol/L for non-DM patients More stringent targets for patients with ASCVD or additional risk factors
Start SGLT2 inhibitor	<ol style="list-style-type: none"> Can be started if patient is on ACE-I/ARB; check renal panel in the elderly, advanced CKD or on diuretic Multiple benefits such as weight loss, BP and DM control, reducing albuminuria, retarding progression, reducing mortality
Shared care with renal	Refer CKD G3B, G4 and G5 or persistent significant albuminuria to nephrology

CKD stage	eGFR (ml/min/1.73 m ²)		
G1	≥90		
G2	60–89		
G3A	45–59		
G3B	30–44		
G4	15–29		
G5	<15		
ACEi/ARB	Initial dose	Max daily dose (mg/day)	Renal dose (mg/day)
Lisinopril	5 mg OM Elderly: 2.5 mg	40 OD	CrCl <30 Initial 2.5–5 OD
Enalapril	5 mg OM Elderly: 2.5 mg OM	20 BD	CrCl <30 max 20/day
Captopril	25 mg BD/TDS	50 TDS	CrCl <50 75% dose BD
Perindopril	4 mg OM Elderly: 2 mg OM	8 OD	CrCl <30 Do not use
Losartan*	50 mg OM	100 OD	No change
Valsartan	80 mg OM	320 OD	No change
Irbesartan	150 mg OM Elderly: 75 mg OM	300 OD	No change
Candesartan	8 mg OM	32 OD	Initial 4 OD
Telmisartan*	40 mg OM	80 OD	No change

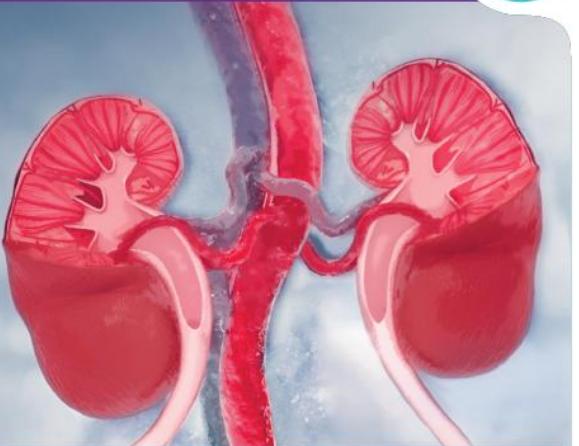
*Recommended option

Updated October 2024

ASCVD: atherosclerotic cardiovascular disease; ACEi: angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor blocker; BMI: body mass index; BP: blood pressure; CKD: chronic kidney disease; CM: care manager; DM: diabetes mellitus; eGFR: estimated glomerular filtration rate; HALT-CKD: Holistic Approach to Lowering and Tracking Chronic Kidney Disease; Hb1Ac: haemoglobin 1Ac; LDL-C: low-density lipoprotein cholesterol; SGLT2i: sodium-glucose cotransporter-2 inhibitor; UACR: urine albumin-creatinine ratio; UPCR: urine protein-creatinine ratio

HALT-CKD: 5-YEAR OUTCOMES (2017-2023)

- **Design:** Retrospective cohort of 3,800 primary-care patients with CKD G1–G3A from 5 polyclinics; median follow-up 4.7 years
- **Key result:**


**Progression to CKD stages
G3B–G5 occurred in 12.6% over 5 years**

 - Statistically significant improvements in HbA1c, SBP/DBP, and albuminuria at 5 years, yet progression persisted
- **Independent predictors of faster progression:**
 - Age, female sex, higher baseline creatinine, higher HbA1c, higher DBP, macro-albuminuria (A3)
- **Medication finding:**
 - Reduction or stopping of ACEi/ARB associated with earlier progression (HR 1.92); maintaining therapy recommended

Chronic kidney disease

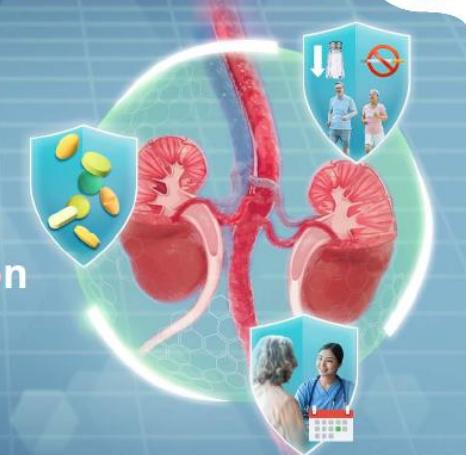
Early detection

Objective	Scope	Target audience
To enhance timely detection of chronic kidney disease (CKD)	Identification of patients at increased risk of CKD, as well as diagnosis and staging of CKD	This clinical guidance is relevant to all healthcare professionals caring for patients at risk of CKD, especially those in primary care

Chronic kidney disease (CKD) is defined as abnormalities of kidney function or structure persisting for at least three months, with implications for health.¹ In 2017, the estimated global prevalence of CKD was 9.1%.² In Singapore, the prevalence of CKD among residents aged 18 to 74 years was 8.8% in 2019–2020,³ and CKD has remained in the top ten causes of death from 2009 to 2019 with CKD-related deaths rising by 76% within that decade.⁴

Timely CKD detection and management play a major part in slowing down or preventing progression to kidney failure or other complications. Early detection is particularly significant given that patients are asymptomatic in the early stages of CKD. Primary healthcare professionals play an essential role in identifying patients at increased risk of CKD to detect it early.

Statement of Intent


This ACE Clinical Guidance (ACG) provides concise, evidence-based recommendations and serves as a common starting point nationally for clinical decision-making. It is underpinned by a wide array of considerations contextualised to Singapore, based on best available evidence at the time of development. The ACG is not exhaustive of the subject matter and does not replace clinical judgement. The recommendations in the ACG are not mandatory, and the responsibility for making decisions appropriate to the circumstances of the individual patient remains at all times with the healthcare professional.

<https://www.ace-hta.gov.sg/healthcare-professionals/ace-clinical-guidances/chronic-kidney-disease-early-detection>

Chronic kidney disease

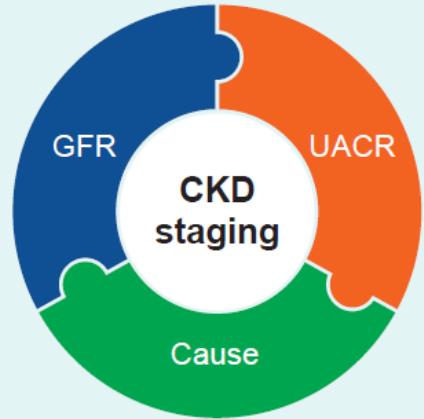
Delaying progression and reducing cardiovascular complications

Objective	Scope	Target audience
To enhance management of early-stage CKD ^a through pharmacotherapy and lifestyle intervention	Management of early-stage CKD ^a through pharmacotherapy and lifestyle intervention	This clinical guidance is relevant to all healthcare professionals caring for patients with CKD, such as those in primary care

Chronic kidney disease (CKD) is a major public health problem worldwide.^{1,2} Patients with CKD have increased risk of cardiovascular (CV) complications such as coronary artery disease, heart failure, arrhythmia, or sudden cardiac death.³ Furthermore, patients with commonly associated comorbidities such as hypertension, dyslipidaemia, or diabetes mellitus carry an even higher CV risk – underscoring the importance of optimised management of comorbidities and overall CV risk for all patients.⁴

In Singapore, CKD prevalence among residents aged 18–74 years was 8.8% in 2019–2020.⁵ This is estimated to triple by 2035, with CKD stages G1–2 accounting for most cases.¹ Locally, the number of people detected with CKD stages G1–2 had increased significantly during the last decade and their annual rate of decline in kidney function was also found to be higher compared to those in the later stages – highlighting the need for timely and effective management early. This ACG focuses on management of early-stage CKD to slow down disease progression and to reduce risk of renal and CV complications.

^aFor the purpose of this ACG, "early-stage" denotes patients with CKD G1-3a and A1-A3.


Statement of Intent

This ACE Clinical Guidance (ACG) provides concise, evidence-based recommendations and serves as a common starting point nationally for clinical decision-making. It is underpinned by a wide array of considerations contextualised to Singapore, based on best available evidence at the time of development. The ACG is not exhaustive of the subject matter and does not replace clinical judgement. The recommendations in the ACG are not mandatory, and the responsibility for making decisions appropriate to the circumstances of the individual patient remains at all times with the healthcare professional.

<https://www.ace-hta.gov.sg/healthcare-professionals/ace-clinical-guidances/chronic-kidney-disease-delaying-progression-and-reducing-cardiovascular-complications>

Overall approach to management of early-stage CKD

Management of CKD may vary between two patients with similar GFR and UACR levels, if their underlying causes of CKD are different.

CKD staging includes:

- i. GFR
- ii. UACR, and
- iii. Cause(s) (see "[CKD – early detection](#)" ACG)

Personalise CKD management plan based on CKD stage (see [Recommendation 1](#)), with the aim of:

Delaying CKD progression, and

Reducing CV complications

Shared or multi-disciplinary care

Consider shared or multidisciplinary care depending on CKD progression and other clinical needs (see [Recommendation 7](#))

Pharmacological treatment

Lifestyle intervention

Follow-up and monitoring

Pharmacological treatment

Optimise management of blood pressure and albuminuria in patients with early-stage CKD:

- ACE inhibitor or ARB should be used to treat patients with CKD and albuminuria and titrated to maximum tolerated dose (see **Recommendation 2**)
- Add SGLT2 inhibitor if albuminuria persists (see **Recommendation 3**)

Treatment considerations depending on comorbidities

Optimise management of CKD-related comorbidities such as:

- Hypertension
- Dyslipidaemia
- T2DM

(see **Recommendation 4**)

Lifestyle intervention

Encourage and provide education on lifestyle intervention through shared decision-making, which includes guidance on:

- Healthy diet
- Physical activity, and
- Smoking cessation

(see **Recommendation 5**)

Follow-up and monitoring

Follow-up all patients with CKD regularly, with more frequent reviews for patients at risk of CKD progression (see **Recommendation 6**)

Review and adjust the management plan, as needed

AGENDA

- CKD in Singapore: Landscape & Burden
- National CKD Registry
- Prevention Strategies
- Community Screening & Early Detection
- Integrated Clinical Management
- **Challenges & Future Directions**

BARRIERS, OUTCOMES AND FUTURE DIRECTION

SGH

Theme	Innovations & Future Directions	Integrated Strategy Highlights
Patient Engagement	Community health programmes expanding to improve awareness and early intervention	Multi-level approach: integrates patient, provider, and system-level interventions
Resource Constraints	Harnessing new medical technologies for early detection and monitoring (e.g., predictive analytics, AI)	Collaboration across public, private, and community sectors
Coordination Complexities	Personalised medicine: tailored treatments for better outcomes. Community-based integrated care models	Focus on seamless care pathways, shared data, and coordinated follow-up
Measuring Outcomes	Robust metrics guide ongoing strategy refinement and programme effectiveness	Continuous monitoring and iterative improvement of CKD prevention and management strategies

INTEGRATED STRATEGY

SGH

Prevention
and Early
Detection

Seamless Care
Pathways

Data-Driven
Registry and
Analytics

Sustainable
Financing
Models

Technology-
Enabled Patient
Empowerment

Green Nephrology
and Environmental
Stewardship

Acknowledgement

Health Promotion Board Singapore

Ministry of Health Singapore

Ms Alcey Ang, SGH

Ms Lim Gek Hsiang, SGH

Ms Joyce Ong, NKF Singapore

Ms Serene Mai, NKF Singapore

Ms Yee Chooi Fong, NKF Singapore

Thank you

NEPHRIC Acknowledgement

Physicians

- A/Prof Chua Horng Ruey
- Dr Weng Wanting
- Dr Hong Wei Zhen
- Dr Poh Cheng Boon
- Dr Liu Bo
- Dr Lim Chee Kong
- Dr Jacquelyn Melody
- Dr Prashanth Ramesh Manjanabail
- A/Prof Tan Ngiap Chuan
- Dr Tay Hui Boon
- Dr Kwek Jia Liang
- Dr Priyanka Khatri
- Dr Hong Wei Zhen
- Dr Bairy Manohar
- Dr Ho Han Kwee
- Dr Lee Eng Sing

Physicians

- Dr Timothy Koh
- Dr Sky Koh
- Dr Charles Ng
- Dr Mabel Tan
- Renal HODs from all the institutions

Senior Management

- Prof Chan Choong Meng
- A/Prof Yeo Khung Keong
- A/Prof Tan Chieh Suai
- A/Prof Lina Choong
- GCEOs, CEOs, CIOs, CMIOs, GDPOs, DXOs, DPOs from all institutions
- NUHS Senior management
- NHG Senior Management
- SingHealth Senior Management

AstraZeneca Team

Legal Office

- Serene Lim

IHIS/SYNAPXE

- Jeffrey Fong
- Andy Ta
- Susan Lee

Finance

- Ayulestari Bte Harsono
- Lee Kwai Sim
- Anna Goh

Public Health Advisor

- Prof Eric Finkelstein
- A/Prof Lim Yee Wei

Renal Coordinator

- Chan Kai Wen

Secretariat

- Alcey Ang
- Chue Xiu Ping

Quality

- Ratna Binte Abdul Rahman

Research Officers

- Tan Lay Lian
- Ong Siok Luan
- Lim Chew Gin
- Heiny
- Wong Mee Kim
- Edwin Liu

HSRU

- Xin Xiaohui
- Lim Gek Hsiang