

APCN x TSN 2025

23rd Asian Pacific Congress of Nephrology

Gene, Immunology, Vast, M^Etabolism at its Finest!

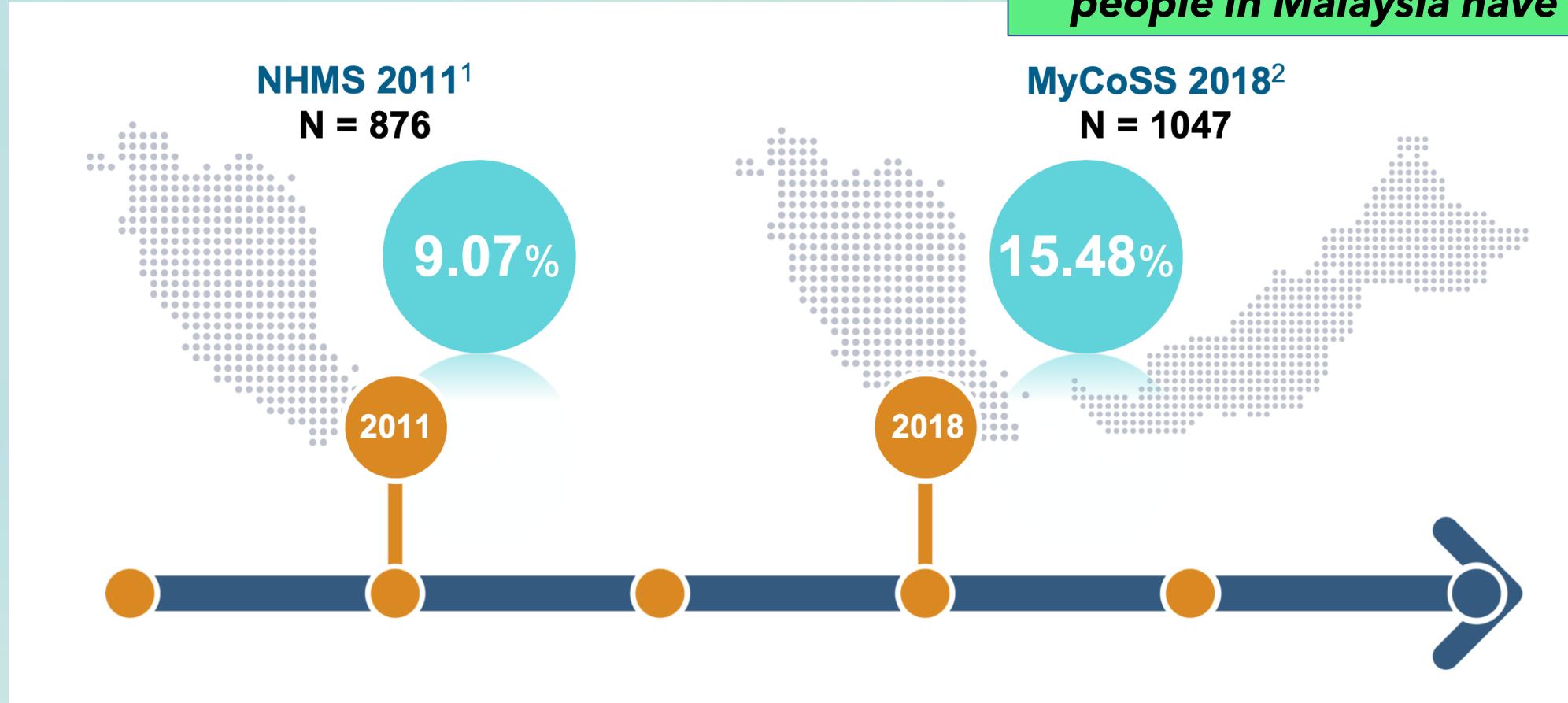
Strategies of CKD Prevention in Malaysia: from early risk flags to integrated, data-driven care

5 to 7th December 2025

Lim Soo Kun, Malaysia

Outline

- Introduction
- CKD Burden in Malaysia: Why Prevention Must Scale
- From Awareness Campaigns to Targeted Prevention
 - *KFRE auto-reporting*
 - *Cascade screening of relatives at dialysis centres*
 - *AI/ML-based tools (Klinrisk)*
- Proposed Integrated CKD Prevention Pathway for Malaysia
- Take home messages


Disclosure

**I have no relevant financial
relationship to disclose any COI for
this presentation within the period
of 36 months.**

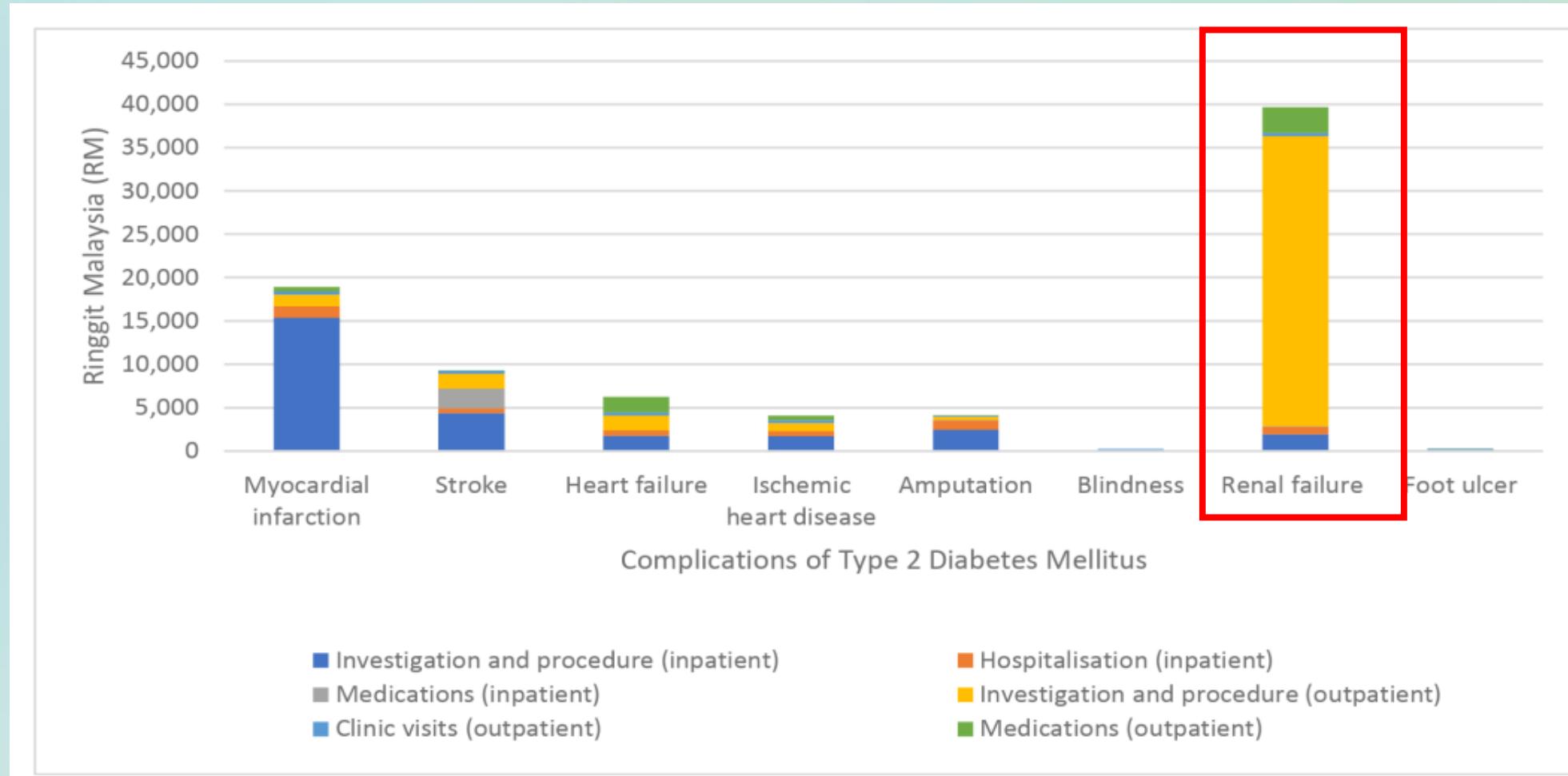
CKD Burden in Malaysia: Why Prevention Must Scale ?

CKD is a **SERIOUS** health concern in Malaysia


~3.8 million
people in Malaysia have CKD¹

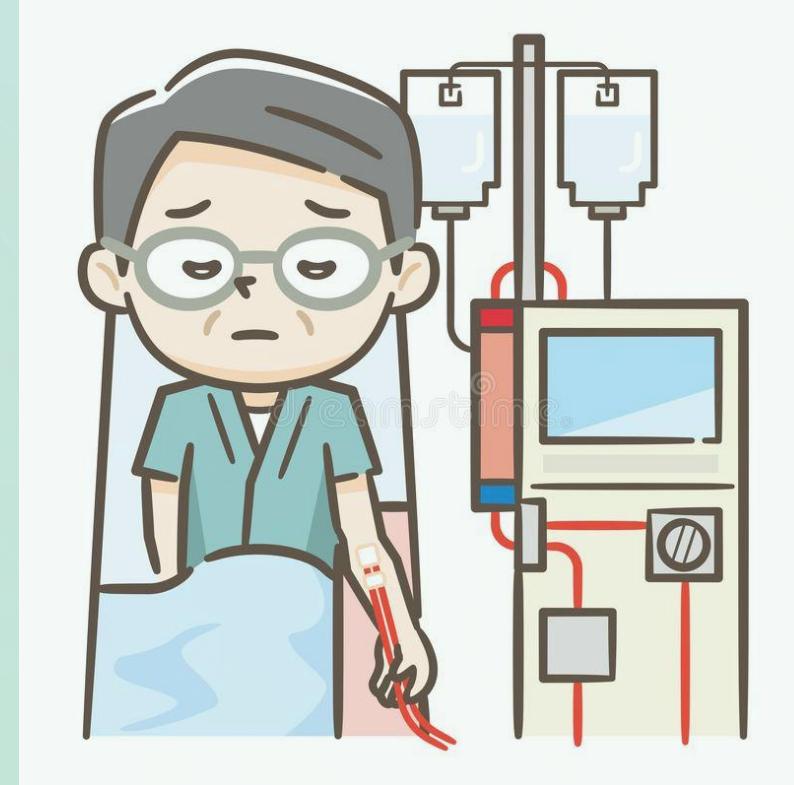
1. Hooi LS, et al. *Kidney Int* 2013;84:1034-1040;

2. Saminathan TA, et al. *BMC Nephrol* 2020;21:344


Forecast of ESKD in Malaysia

Major drivers:

- *Diabetes*
- *Hypertension*
- *Obesity*
- *Ageing*


DKD leading to kidney failure has the highest economic burden compared to other comorbidities

Kidney failure cost an average of RM42,000, with almost similar cost each subsequent year

T2DM complications	Event year	Subsequent year
MI	RM19,381.43 (USD4,528.37)	RM1,802.40 (USD421.12)
Stroke	RM8,740.60 (USD2,042.20)	RM1,388.40 (USD312.71)
HF	RM5,032.71 (USD1,175.87)	RM2,246.10 (USD524.79)
IHD	RM3,788.31 (USD885.12)	RM1,802.40 (USD421.12)
Amputation	RM5,959.93 (USD1,392.51)	—
Blindness	RM2,387.00 (USD557.71)	—
RF with haemodialysis	RM42,394.97 (USD9,905.37)	RM39,521.52 (USD9,233.89)
Diabetic foot ulcer	RM316.12 (USD73.86)	—

CKD - predicted to be TOP 10 leading cause of death by 2040 !

Leading causes 2016	
1	Ischaemic heart disease
2	Stroke
3	Lower respiratory infections
4	Diarrhoeal diseases
5	Road injuries
6	Malaria
7	Neonatal preterm birth
8	HIV/AIDS
9	COPD
10	Neonatal encephalopathy
11	Tuberculosis
12	Congenital defects
13	Lung cancer
14	Self-harm
15	Diabetes
16	Chronic kidney disease
17	Other neonatal
18	Alzheimer's disease
19	Neonatal sepsis
20	Liver cancer

Leading causes 2040	
1	Ischaemic heart disease
2	Stroke
3	Lower respiratory infections
4	COPD
5	Chronic kidney disease
6	Alzheimer's disease
7	Diabetes
8	Road injuries
9	Lung cancer
10	Diarrhoeal diseases
11	Self-harm
12	HIV/AIDS
13	Liver cancer
14	Hypertensive heart disease
15	Colorectal cancer
16	Tuberculosis
17	Congenital defects
18	Neonatal preterm birth
19	Breast cancer
20	Falls

From Awareness Campaigns to Targeted Prevention

- Past decade: health talks, screening days, World Kidney Day events
- Awareness surveys: CKD knowledge still low in general population
- Opportunistic, one-off screening → limited follow-up
- Need shift: **from mass, one-time screening → targeted, repeated, risk-based prevention**
 - 1. KFRE auto-reporting
 - 2. Cascade screening of relatives at dialysis centres
 - 3. AI/ML-based tools (Klinrisk)

Gaps in clinical practise (Reflection on Malaysia scenario)

Many examples of missed opportunities

AKI treat as CKD

64-yr-old lady

- Presented with elevated creatinine 500 μ mol/l
- Advised for dialysis
- Further investigations showed AKI sec to AIN

High risk CKD not referred

55-yr-old man

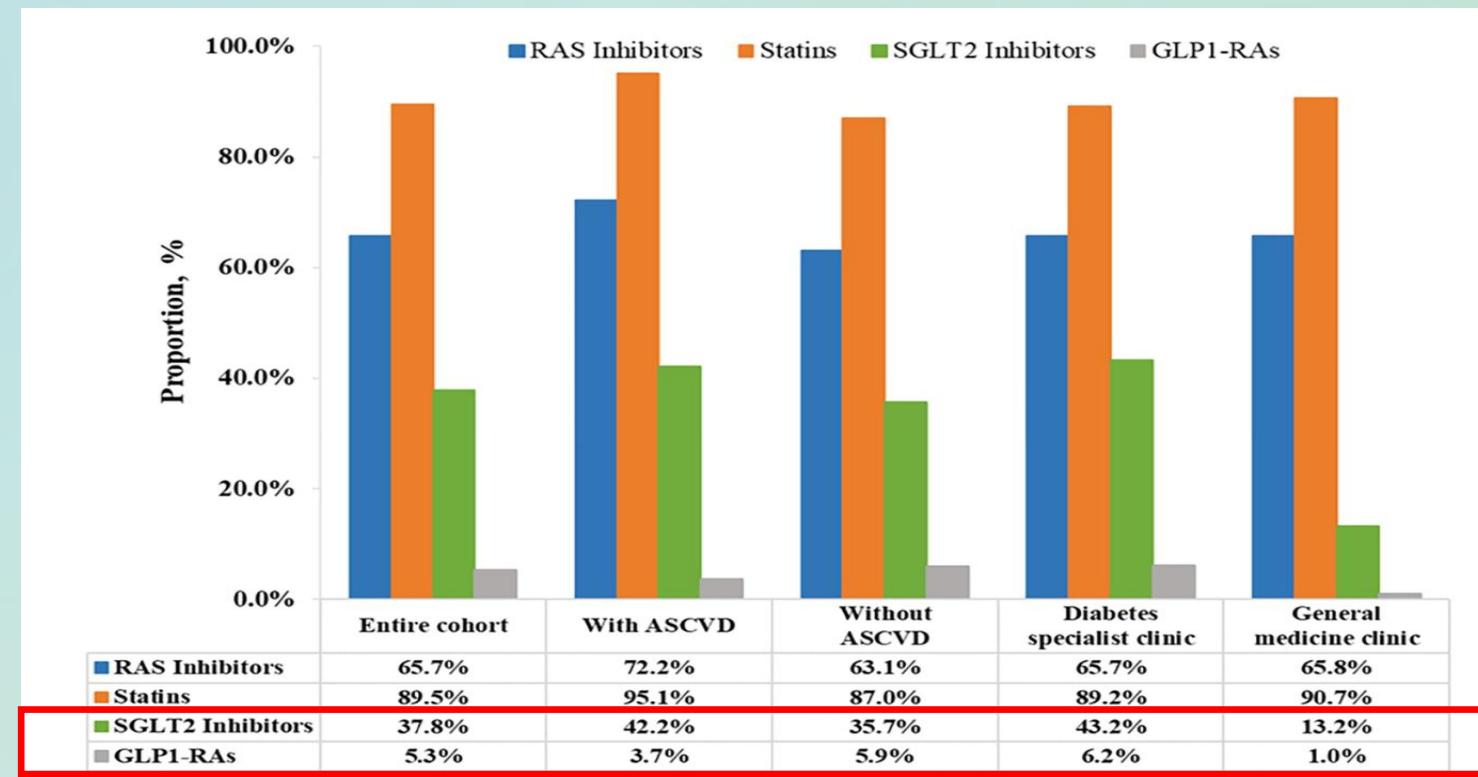
- First referred to nephrology
- Creatinine 225 μ mol/L
- In retrospect, uACR >200mg/mmol for few years. eGFR dropped >5ml/min/1.73m² per year for few years

Non-DKD treated as DKD

48-yr-old man

- T2DM x 10yrs
- Noticed to have severe albuminuria (uACR 800mg/mmol)
- Treated as DKD
- Renal biopsied showed membranous nephropathy

Underutilisation of urine test

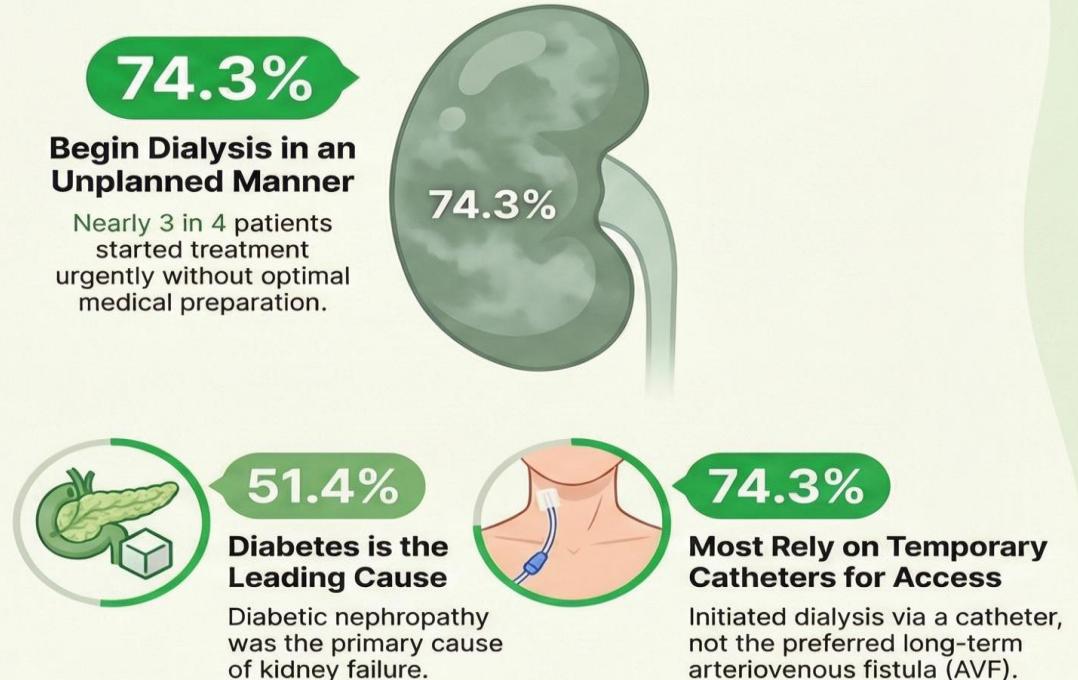

45-yr-old lady

- Follow-up at GP for T2DM
- eGFR 80ml/min/1.73m²
- No urine test for 2 yrs
- First uACR 60mg/mmol

ACR screening - room for improvement

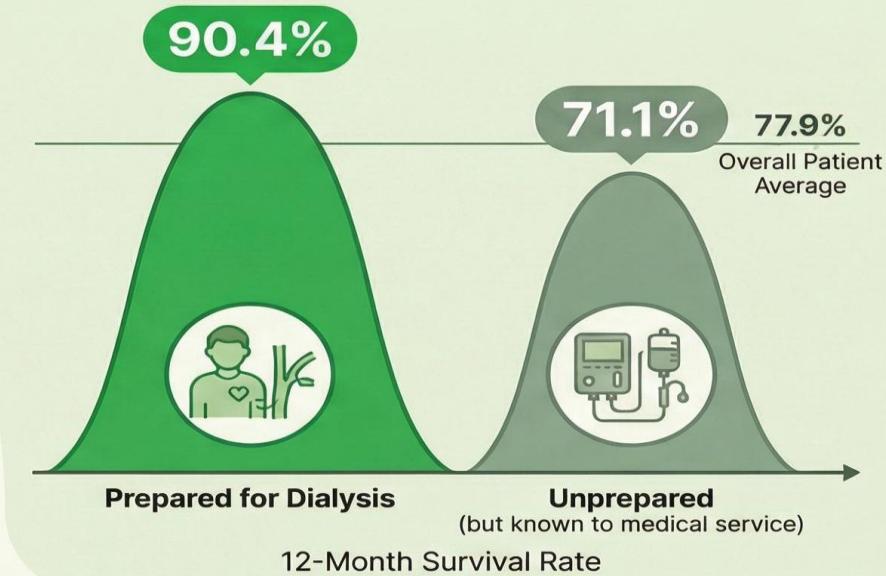
States	Clinical Investigations											
	Urine Protein						Urine Microalbumin					
	No. of patients audited	2022		No. of patients audited	2023		No. of patients audited	2022		No. of patients audited	2023	
		n	%		n	%		n	%		n	%
MALAYSIA	106,742	79,202	74.20	113,903	87,655	76.96	106,742	57,731	54.08	113,903	62,604	54.96
Johor	7,570	5,407	71.43	7,350	5,773	76.67	7,570	3,246	42.88	7,350	3,419	45.41
Kedah	7,718	5,444	70.54	7,791	6,205	79.64	7,718	3,697	47.90	7,791	3,997	51.30
Kelantan	8,657	7,124	82.29	9,995	8,184	81.88	8,657	6,082	70.26	9,995	6,622	66.25
Melaka	13,522	8,426	62.31	13,378	8,629	64.50	13,522	5,117	37.84	13,378	5,834	43.61
N. Sembilan	5,863	4,637	79.09	5,564	4,367	78.49	5,863	2,785	47.50	5,564	2,142	38.50
Pahang	7,229	6,064	83.88	7,057	6,189	87.70	7,229	4,629	64.03	7,057	4,978	70.54
Perak	8,348	5,965	71.45	9,207	6,506	70.66	8,348	4,384	52.52	9,207	4,724	51.31
Perlis	789	630	79.85	800	749	93.63	789	545	69.07	800	698	87.25
P. Pinang	4,316	2,776	64.32	4,668	3,235	69.30	4,316	2,158	50.00	4,668	2,565	54.95
Sabah	10,819	7,900	73.02	14,099	10,866	77.07	10,819	4,829	44.63	14,099	6,624	46.98
Sarawak	5,440	3,518	64.67	6,911	4,636	67.08	5,440	2,656	48.82	6,911	3,289	47.59
Selangor	6,721	4,457	66.31	6,772	4,815	71.10	6,721	3,781	56.26	6,772	3,746	55.32
Terengganu	15,336	13,429	87.57	15,681	13,858	88.37	15,336	11,227	73.21	15,681	11,247	71.72
WP KL	3,073	2,207	71.82	3,107	2,427	78.11	3,073	1,492	48.55	3,107	1,527	49.15
WP Labuan	589	587	99.66	588	548	93.20	589	503	85.40	588	546	92.86
WP Putrajaya	752	631	83.91	755	668	88.48	752	600	79.79	755	646	85.56

RESEARCH ARTICLE


Real-world evaluation of care for type 2 diabetes in Malaysia: A cross-sectional analysis of the treatment adherence to guideline evaluation in type 2 diabetes (TARGET-T2D) study**N = 5094 (13 December 2021 to 30 June 2022)**

Late CKD detection → unplanned dialysis start

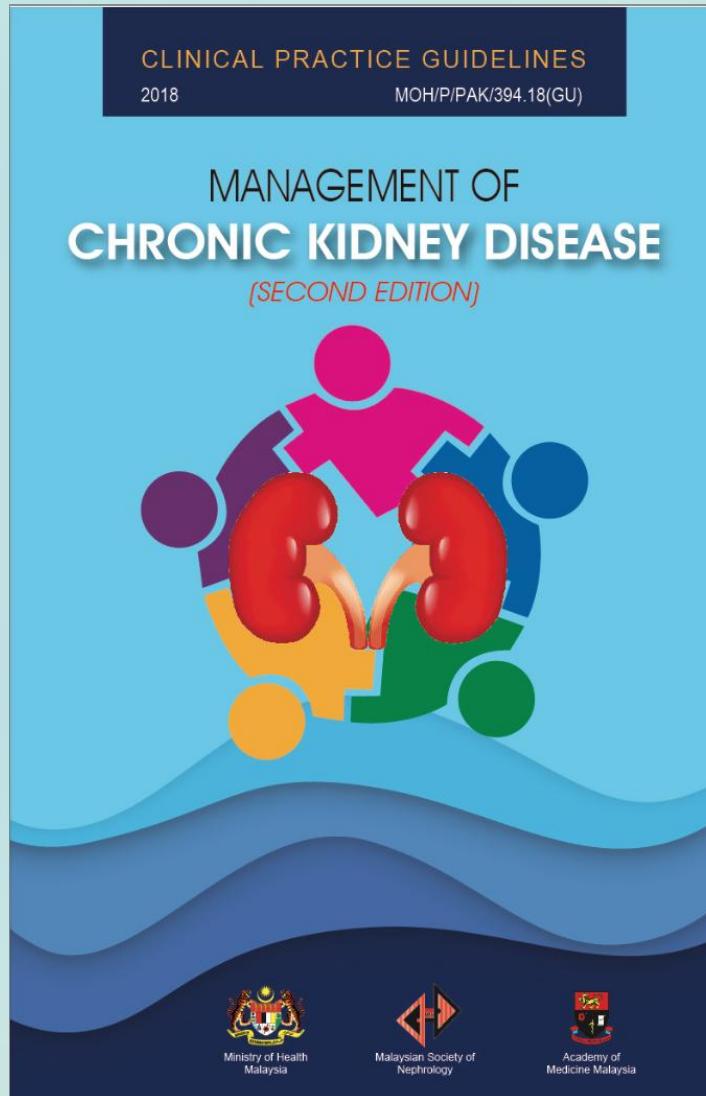
The Crisis of Unplanned Dialysis: A 2014 Snapshot from Sabah


THE PROBLEM: A MAJORITY START DIALYSIS UNPREPARED

THE CONSEQUENCE: A STARK IMPACT ON SURVIVAL

Preparation for Dialysis is a Key Factor in Survival

Patients who were medically prepared for dialysis had a significantly higher survival rate after one year.


Wong KW, et al. *Med J Malaysia*. 2017 Jun;72(3):179-185.

NotebookLM

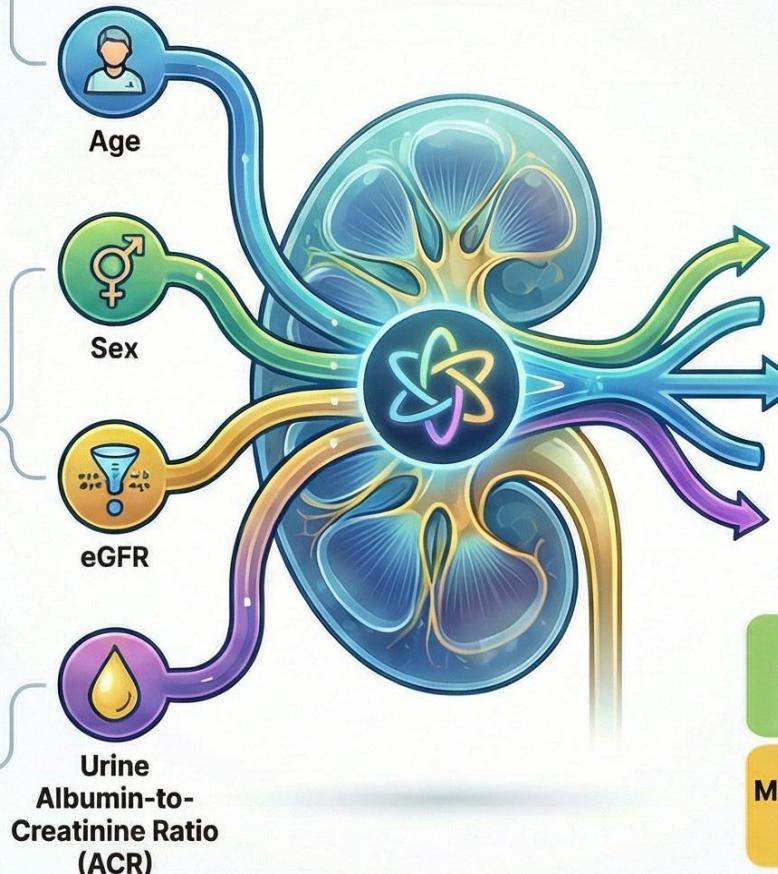
MDTR (2023): Up to 43.7% of patients started HD via dialysis catheters in Malaysia

KFRE: Turning Lab Data into Risk Flags

CKD CPG: eGFR-based nephrology referral

7. REFERRAL

Recommendation 12


- A patient with chronic kidney disease (CKD) with any of the following criteria should be referred to a nephrologist/physician:
 - persistent heavy proteinuria [urine protein ≥ 1 g/day or urine protein: creatinine ratio (uPCR) ≥ 100 mg/mmol*] despite optimal treatment
 - persistent isolated microscopic haematuria after excluding urogynaecological cause
 - persistent haematuria with proteinuria (urine protein ≥ 0.5 g/day or uPCR ≥ 50 mg/mmol*)
 - rapidly declining renal function [loss of estimated glomerular filtration rate (eGFR) >5 ml/min/1.73 m² in one year or >10 ml/min/1.73 m² within five years]
 - eGFR <30 ml/min/1.73 m² (eGFR categories G4 - G5)
 - resistant hypertension (failure to achieve target blood pressure despite three antihypertensive agents including a diuretic)
 - suspected renal artery stenosis
 - suspected hereditary kidney disease
 - pregnant or when pregnancy is planned
 - persistent abnormalities of serum potassium
 - unexplained cause of CKD

The Kidney Failure Risk Equation (KFRE)

A Lab-Based Predictive Equation

Uses four core variables: Age, Sex, eGFR, and Urine Albumin-to-Creatinine Ratio (ACR).

Extensively Validated & Trusted

100,000+

Validated in over 30 countries and used by more than 100,000 physicians worldwide.

Integrated into Global Guidelines

Incorporated into UK NICE and international KDIGO clinical practice guidelines for CKD.

Clinical Use

Guides Key Clinical Decisions: Prioritize nephrology referrals.

Time dialysis access planning.

Counsel patients objectively.

Risk Levels & Clinical Application

Patients with eGFR 30-59 (CKD Stage 3)

Low risk

Patients with eGFR 15-29 (CKD Stage 4)

Low risk

Medium risk

Medium risk

High risk

High risk

KFRE Auto-Reporting: Making Risk Visible

42-year-old lady

- T2DM

- HPT

Medications:

- Losartan 100mg OD

RENAL FUNCTION TEST (SERUM)

Sodium (Serum)	137	mmol/L	136 - 145
Potassium (Serum)	4.6	mmol/L	3.6 - 5.2
Chloride (Serum)	104	mmol/L	99 - 109
Total CO ₂ (Serum)	25.0	mmol/L	20.0 - 31.0
Anion Gap (Serum)	13	mmol/L	10 - 20
Urea (Serum)	H 10.3	mmol/L	3.2 - 8.2
Creatinine (Serum)	H 174	umol/L	44 - 71
eGFR	L 31		> 90

Probability of kidney failure at 2 years 6.71 < 10% - Low Risk
10% - 20 % - Medium Risk
> 20% - High Risk

Probability of kidney failure at 5 years 26.85 < 5% - Low Risk
5% - 15% - Medium Risk
> 15% - High Risk

Collaboration with private sector in CKD initiative

Home » Pemimpin industri kesihatan lancar MyCKD CPG intervensi penyakit buah pinggang

NEGARA

Pemimpin industri kesihatan lancar MyCKD CPG intervensi penyakit buah pinggang

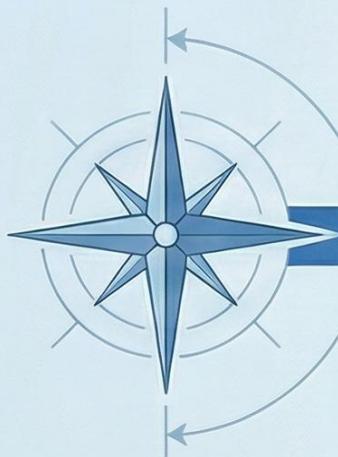
Oleh NUR FATIN ZAHRA 7 Mei 2024, 1:36 pm

[Facebook](#) [Twitter](#) [WhatsApp](#) [Email](#) [Telegram](#) [LinkedIn](#)

Dr. Mohamed Iqbal (enam dari kiri) melakukan gimik pelancaran aplikasi MyCKD CPG ketika ditemui di Majlis Pelancaran MyCKD CPG di Menara KEN, Taman Tun Dr Ismail di ibu negara hari ini.

innoquest

In pursuit of science, innovating for life

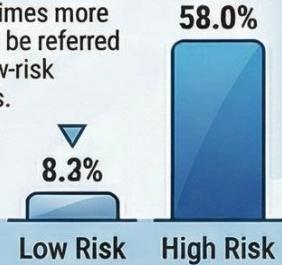

SUNWAY
MEDICAL CENTRE®

Sunway City Kuala Lumpur

KFRE: A Tool to Guide Chronic Kidney Disease Management in Primary Care

STUDY CONTEXT

Retrospective study of 2,293 patients with Moderate to Advanced Chronic Kidney Disease (CKD Stage 3 & 4) in primary care, assessing KFRE's alignment with clinical decisions.

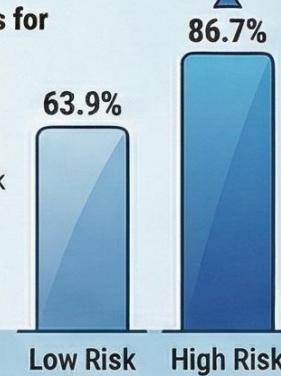

KFRE RISK SCORE

KFRE GUIDES SPECIALIST REFERRALS

STAGE 3 CKD

In Stage 3 CKD, referral rates climb dramatically with KFRE risk.

High-risk patients over 7 times more likely to be referred than low-risk patients.

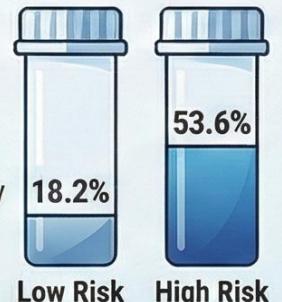


Nephrology Clinic

STAGE 4 CKD

The trend continues for Stage 4 CKD.

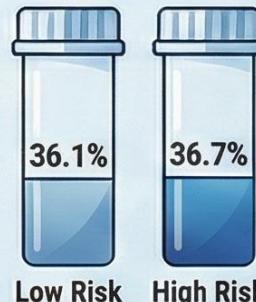
Referral rates for medium and high-risk patients significantly higher than for low-risk patients.


Nephrology Clinic

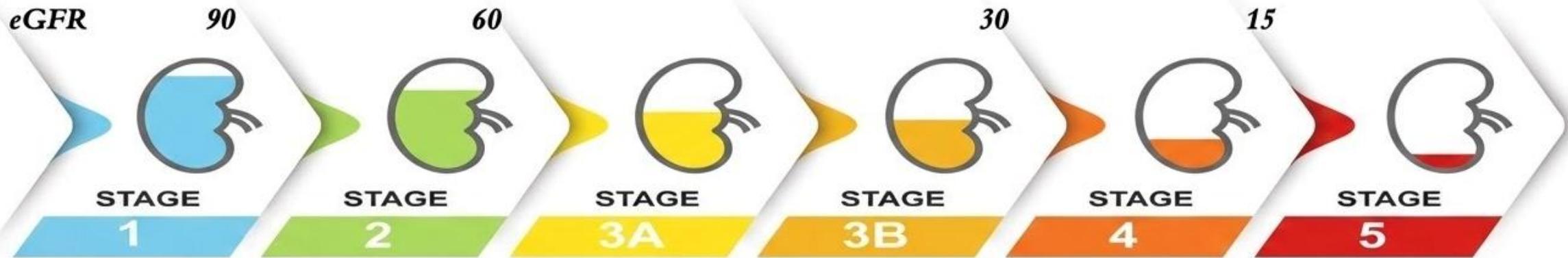
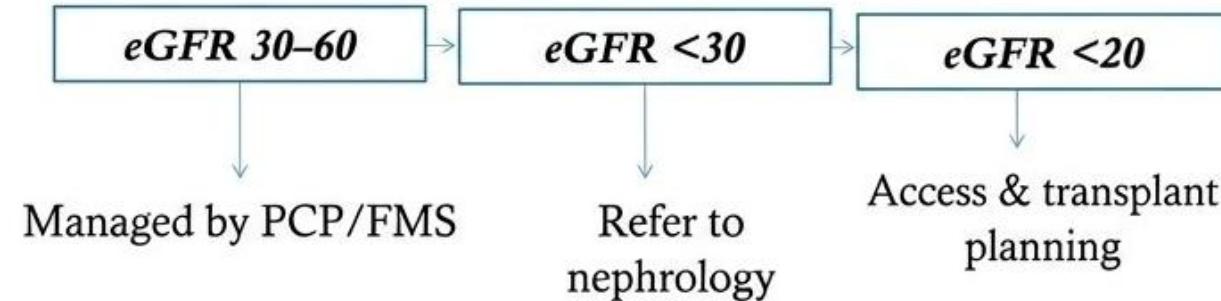
KFRE INFORMS TREATMENT STRATEGY

STAGE 3 CKD

For Stage 3 CKD, KFRE effectively prioritizes intensive therapy.


High-risk patients nearly 3 times more likely to receive combination therapy (RAS-i & SCLT2-i).

STAGE 4 CKD



For Stage 4 CKD, high baseline risk limits treatment differentiation.

Therapy was similar across all risk levels, highlighting the need for universal intensive management.

Optimized Medical Therapy

eGFR-based criteria

KFRE-based criteria

Cascade screening of high-risk relatives at dialysis centres

Why Screen Relatives of Dialysis Patients?

Chronic Kidney Disease: Is It in Your Family?

A major national study reveals a powerful connection between your family's health history and your personal risk for kidney disease.

Your Risk of Developing Kidney Disease

70%

Higher Risk

If your sibling has Chronic Kidney Disease (CKD).

50%

Higher Risk

If your child has CKD.

42%

Higher Risk

If your parent has CKD.

Your Risk of Disease Progression

(For those already diagnosed with CKD)

Faster Progression to Severe Disease

If you have CKD, a family member with End-Stage Renal Disease (ESRD) increases your risk of progressing to the same severe stage.

57%

Higher Risk of Progression

If your sibling has ESRD.

Takeaway: Know Your Family History

Discuss your family's kidney health with your doctor to assess your risk and take preventive measures.

Dialysis-Centre Cascade Screening Workflow

Dialysis Center: Family Screening Workflow

1. Identify Participants

Screen first-degree relatives (ages 18-75) of current dialysis patients.

BP
(Blood Pressure)

BMI
(Body Mass Index)

eGFR
(Estimated Glomerular Filtration Rate)

ACR
(Albumin-to-Creatinine Ratio)

MEMO

CKM Risk Bundle

- Brief lifestyle counselling
- Smoking cessation referral/support
- Exercise/weight management advice
- Vaccination review

3. Deliver Results & Counseling

A nurse or pharmacist explains the results and provides personalized lifestyle advice.

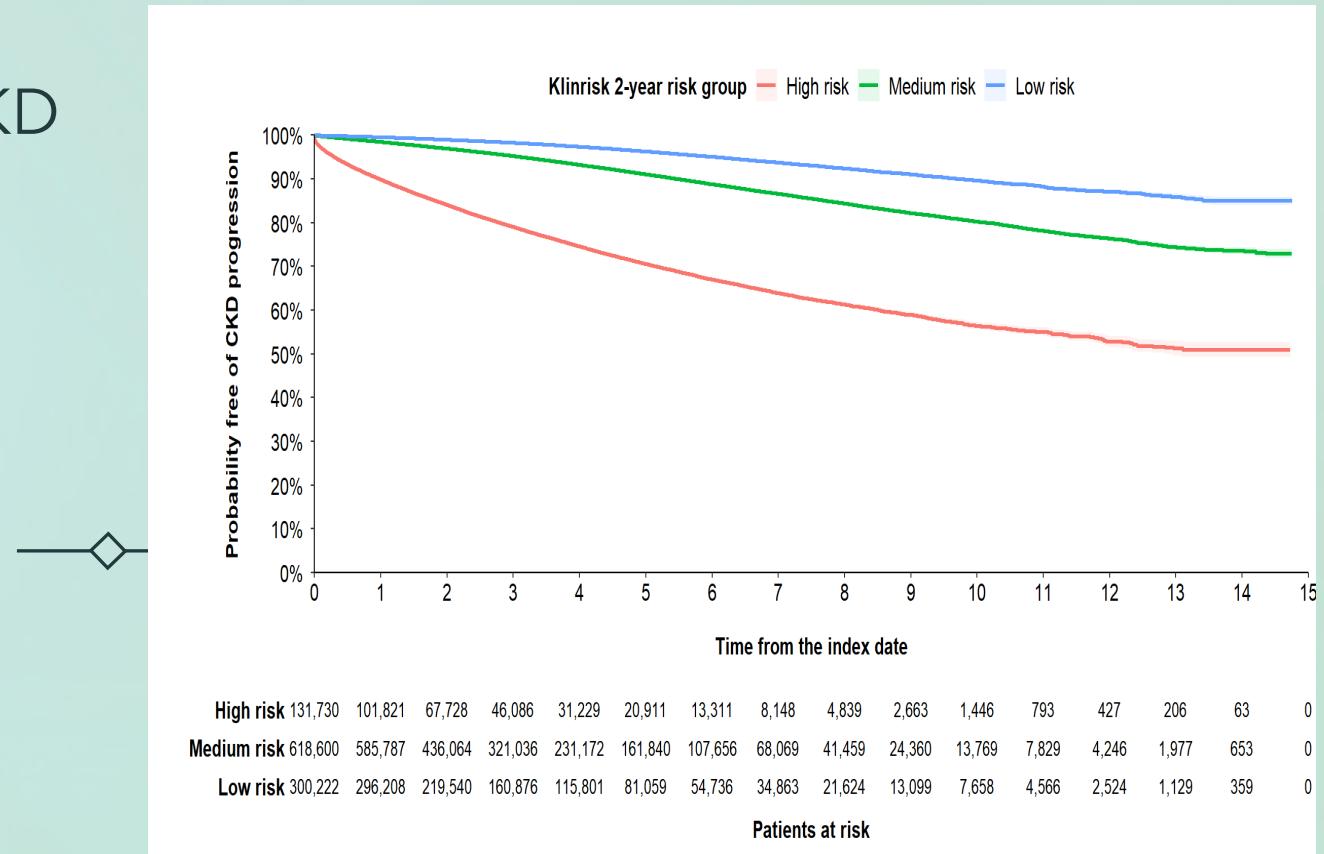
HIGH CARDIO-KIDNEY-METABOLIC RISK

SPECIALIST CARE

4. Refer High-Risk Individuals

Refer patients with CKD or high cardio-kidney-metabolic risk for specialist care.

Klinrisk: From Research to Real-World Use


Why Bring AI/ML into CKD Prevention?

- CKD is very common & data-rich (repeated labs, BP, meds)
- AI/ML can:
 - i. Detect risk patterns earlier
 - ii. Stratify large populations automatically
 - iii. Support personalized follow-up plans
- KFRE vs ML models:
 - a. KFRE - simple, transparent, CKD-focused
 - b. ML (e.g., Klinrisk) - more variables, longitudinal, higher flexibility

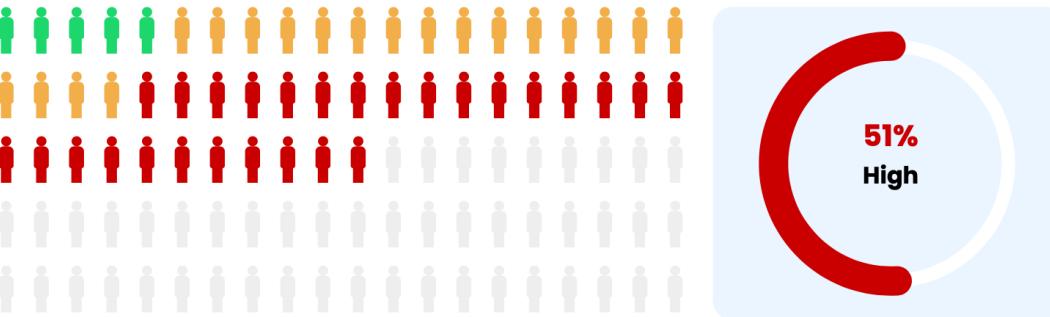
Klinrisk

The next generation model for CKD risk prediction

- KFRE does not predict CKD progression in earlier stages of CKD
- **Klinrisk**
 - For CKD **Stage 1-5**
 - Predict kidney function decline
(Composite of 40 % decline in eGFR or kidney failure)
 - Use routinely collected laboratory data
 - Does not require biomarkers
 - Does not require EHR access

Unpublished data

Klinrisk (Sample Report)


KLINRISK
CLINICAL RISK PREDICTION FOR KIDNEY DISEASE

Accession Number
2023-IM3270036

Patient Information		Test Information	
Name	LFLBLACK, DIAMOND ALICE	Ordered By	IT TESTING
Date of Birth	01-Nov-96	Collection Day	23-Nov-23
Sex	Female	Report Date	24-Jan-25
Medical Record (HCN/PHN)			

Test Report

Risk of progressive decline in kidney function

Low
0 - 5

Medium
6 - 24

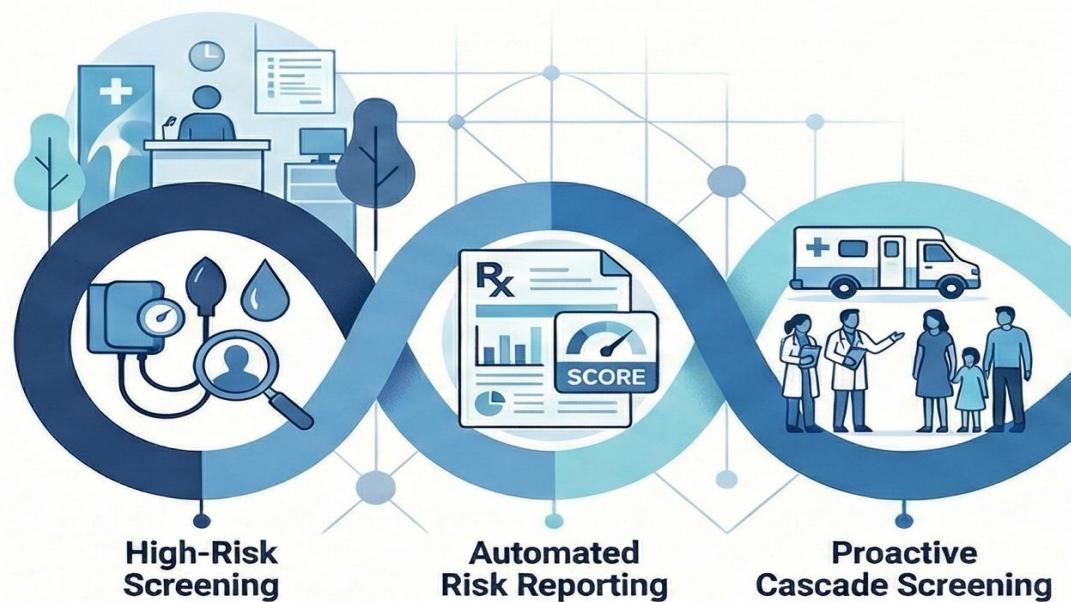
High
25+

Patients at high risk can work with their physician to implement an evidence based care plan to improve their kidney health.

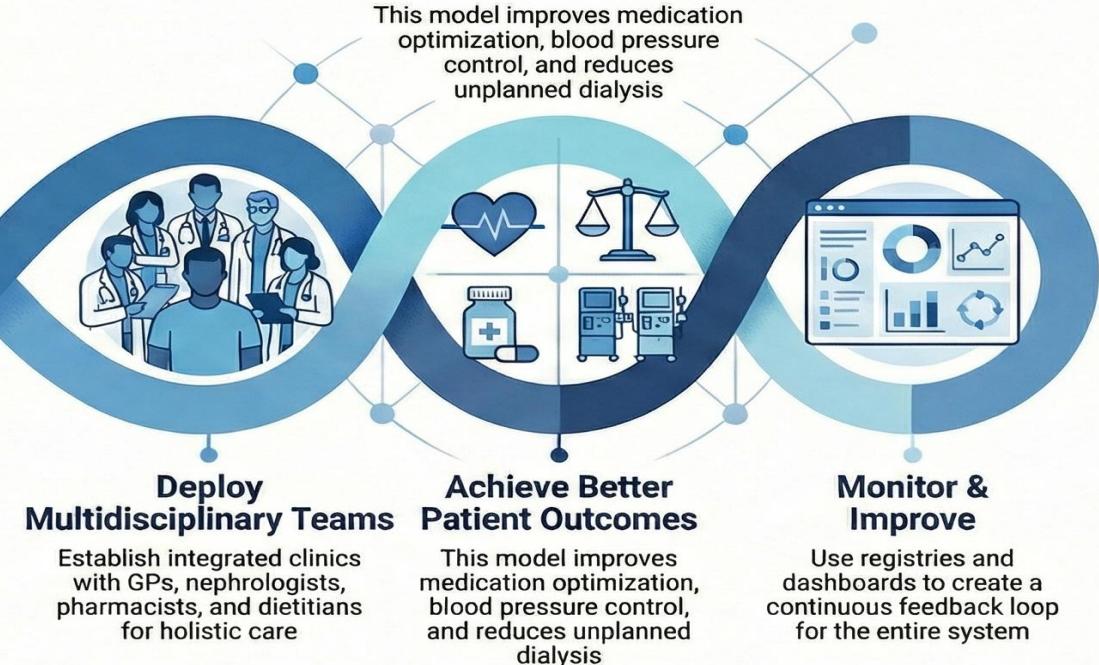
This algorithm is developed by Klinrisk Inc. and has been tested for accuracy in independent populations. It is not an accredited algorithm, nor cleared or approved by Health Canada and it is not required to be.

Klinrisk algorithm is for clinical care and should be considered as an aid to help with clinical decision making and is not meant to replace a physician's advice or diagnosis.

The laboratory tests required for the algorithm were performed at LifeLabs.


Clinical Decision Support

Frequency of Monitoring 3 times per year	Complications of CKD Anemia Hyperkalemia Metabolic Acidosis CKD-MBD	Disease Modifying Treatment to Slow CKD Progression RAASI SGLT2i Therapy Non Steroidal MRA
Blood Pressure Target Target standardized BP <120 systolic	Anemia - Hemoglobin 119 g/L Reference range : Hemoglobin 120 to 160 g/L CKD-MBD - Phosphate - 1.1 mmol/L & Calcium - 2.11 mmol/L Reference range : Serum phosphate 0.8 - 1.5 mmol/L & Serum calcium 2.15 - 2.60 mmol/L	<ul style="list-style-type: none">Consider RAASI therapy with potassium monitoring
Referral Nephrology referral is indicated	Other Recommendations <ul style="list-style-type: none">Suggest iron studies including ferritin, total iron-binding capacity and serum ironMonitor and treat as per CKD-MBD guidelines	


Integrated CKD Care: Evidence for MDT and Virtual Models

From Risk to Action: An Integrated Pathway for CKD Care

PHASE 1: IDENTIFY & STRATIFY AT-RISK PATIENTS

PHASE 2: DELIVER INTEGRATED CARE & TRACK OUTCOMES

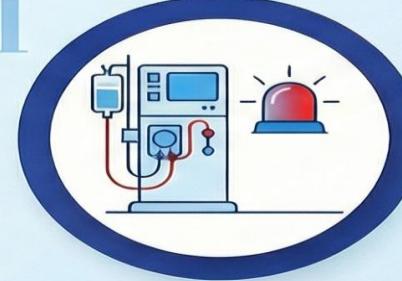
Monitoring Outcomes: Towards a Learning System

Indicators for CKD Prevention Program

ACR Testing Coverage

Measuring the percentage of high-risk groups screened using Albumin-to-Creatinine Ratio (ACR) tests.

Appropriate Patient Referrals


Tracking the percentage of high-risk patients (per KFRE/Klinrisk scores) who are correctly referred.

Medication Uptake

Monitoring the adoption of SGLT2I/RAASi medications among eligible CKD patients.

Unplanned Dialysis Rate

Assessing the rate at which patients start dialysis on an emergency or unplanned basis.

- Data sources: lab systems, CKD/ESKD registries, pharmacy data
- Continuous quality improvement cycles

Key Messages & Call to Action

- Awareness alone is **not enough** - prevention must be embedded in systems
- KFRE + cascade screening + Klinrisk provide a practical risk architecture
- Integrated CKD/CKM care translates risk into **GDMT** and lifestyle action

- Equity and governance must guide implementation
- Collaborate to test, refine, and scale these strategies in Malaysia and the region

THANK YOU !

Lim Soo Kun

Malaysia

limsk@ummc.edu.my

4TH ANNUAL CONGRESS OF
MALAYSIAN SOCIETY
OF NEPHROLOGY

REFINING NEPHROLOGY FOR TOMORROW

24 - 26 JULY 2026
SUNWAY PYRAMID CONVENTION CENTRE

PRECONGRESS
23 JULY 2026
SUNMED CONVENTION CENTRE

Organised By:
MALAYSIAN
SOCIETY OF
NEPHROLOGY

congress.msn.org.my