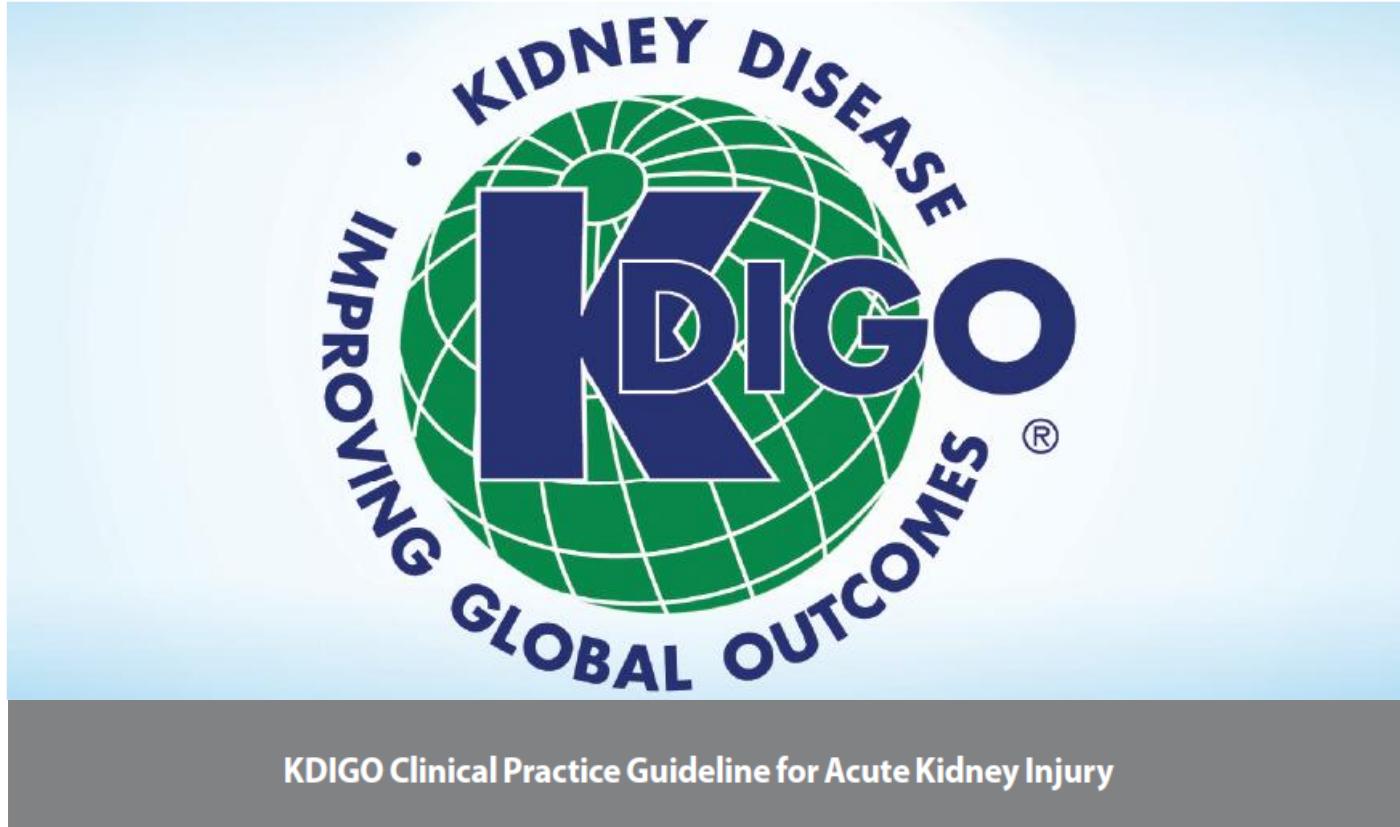


New and Emerging Evidence in the Delivery of Renal Replacement Therapy in AKI

Ron Wald, MDCM MPH FRCPC

St. Michael's Hospital, Toronto, Canada

Tel Aviv Medical Center, Tel Aviv, Israel


Asian Pacific Congress of Nephrology

Taipei, Taiwan

December 5, 2025

Disclosures

- Research funding (unrestricted): Baxter/Vantive
- Consulting fees: Lilly, Otsuka, Alexion, Baxter/Vantive
- Scientific Advisory Board: Eliaz Therapeutics, AquaPass
- Honoraria: UpToDate
- Editorial Board Membership: Kidney Medicine, Kidney360, Canadian Journal of Kidney Health and Disease
- Member, Scientific Committee, Canadian Society of Nephrology

Section 5: Dialysis Interventions for Treatment of AKI

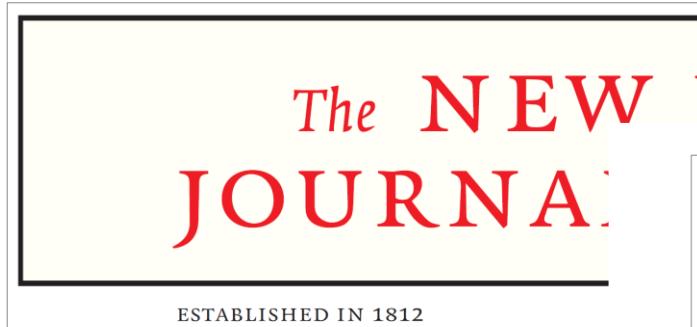
Kidney International Supplements (2012) **2**, 89–115; doi:10.1038/kisup.2011.35

33 statements

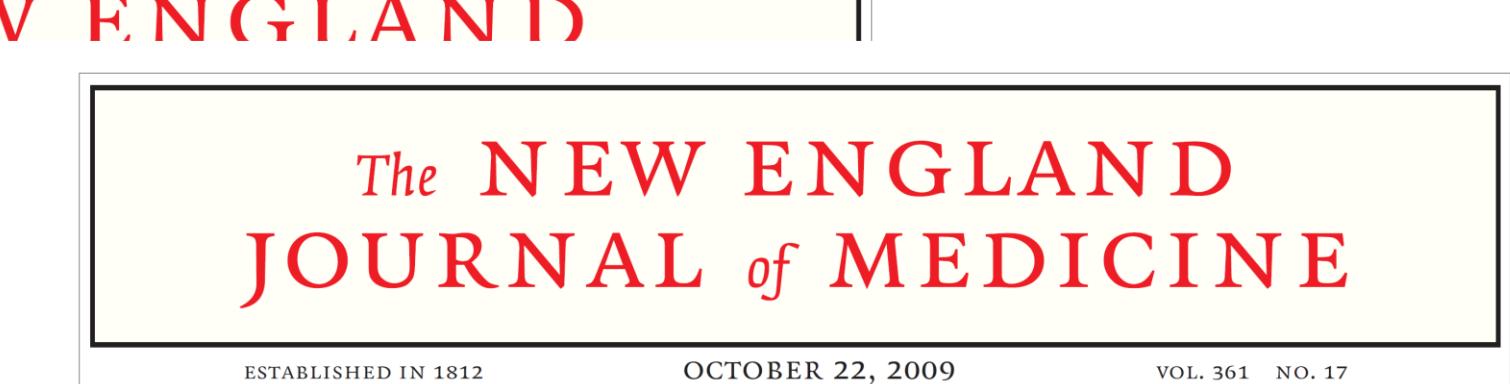
14 were “suggestions”, 9 ungraded

Objective

- To discuss three aspects of renal replacement therapy delivery where there is new and ongoing research
 - RRT dose
 - The RRT fluid prescription
 - RRT weaning/discontinuation


Revisiting the dose of CRRT

KDIGO Clinical Practice Guideline for Acute Kidney Injury


5.8.4: We recommend delivering an effluent volume of 20–25 ml/kg/h for CRRT in AKI (1A). This will usually require a higher prescription of effluent volume. (Not Graded)

Where does this evidence come from?

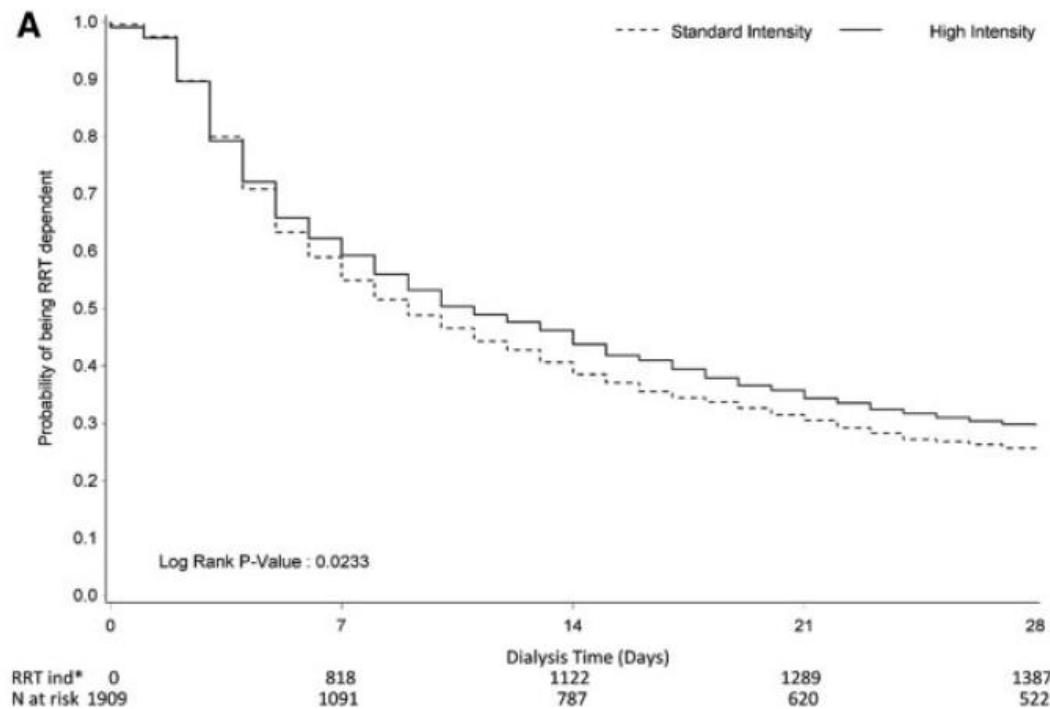
Intensity of Renal Support with A
with A

The VA/NIH

Intensity of Continuous Renal-Replacement Therapy
in Critically Ill Patients

The RENAL Replacement Therapy Study Investigators*

Bottom line from these trials:


High-intensity CRRT (35-40 mL/kg/hr) did not mediate improved survival as compared to standard-intensity CRRT (20-25 mL/kg/hr)

Are there harms associated with higher intensity RRT?

- Compromise of therapeutic drug levels (especially antibiotics)
- Hypophosphatemia
- Loss of nutrients
- Persistent dialysis dependence?

Renal replacement therapy intensity for acute kidney injury and recovery to dialysis independence: a systematic review and individual patient data meta-analysis

Ying Wang^{1,2}, Martin Gallagher^{1,2}, Qiang Li¹, Serigne Lo^{2,3}, Alan Cass⁴, Simon Finfer^{1,2}, John Myburgh^{1,5}, Catherine Bouman⁶, Robert Faulhaber-Walter⁷, John A Kellum⁸, Paul M Palevsky⁹, Claudio Ronco¹⁰, Patrick Sudan¹¹, Ashita Tolwani¹² and Rinaldo Bellomo^{1,13}

Higher intensity CRRT conferred a higher risk of RRT dependence

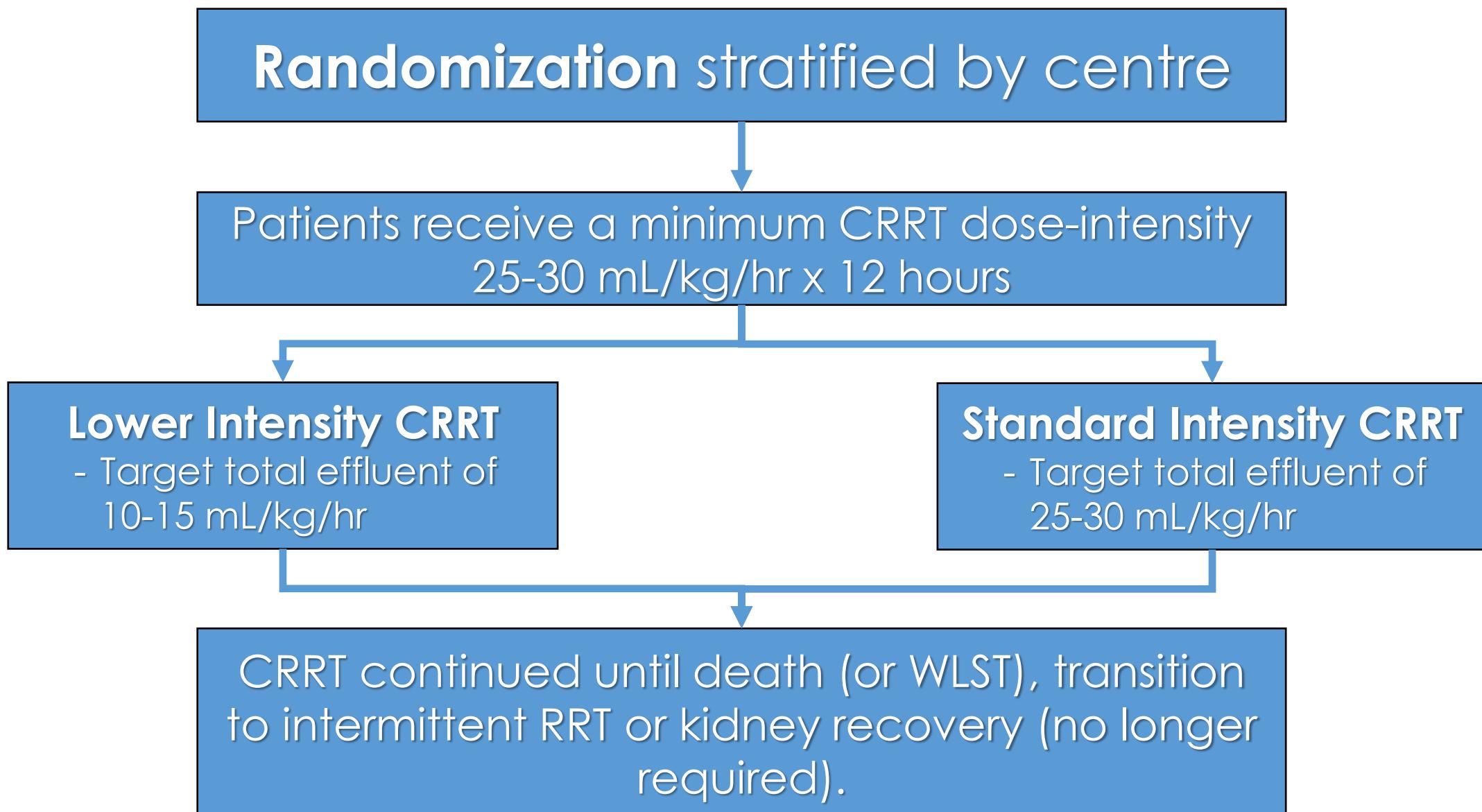
But let's ask a more fundamental question

- What is the evidence for a dose of 20-25 mL/kg/hr as the standard of care?

Can we go lower?

LoW Dose-Intensity vs. Standard Dose-Intensity Continuous Renal ReplaceMent Therapy in Critically III Patients (WISDOM**): A Pilot Randomized Trial**

ClinicalTrials.gov Identifier: NCT06446739


What are the overarching questions of the WISDOM research program?

- Among critically ill patients with AKI receiving CRRT, is lower dose-intensity, compared with standard dose-intensity
 1. Non-inferior with respect to RRT duration and kidney recovery?
 2. Superior with respect to reducing RRT duration and improving kidney recovery.
- Our ongoing multicentre pilot trial is evaluating the feasibility and tolerability of lower versus standard CRRT dose-intensity

WISDOM Pilot Trial: Design

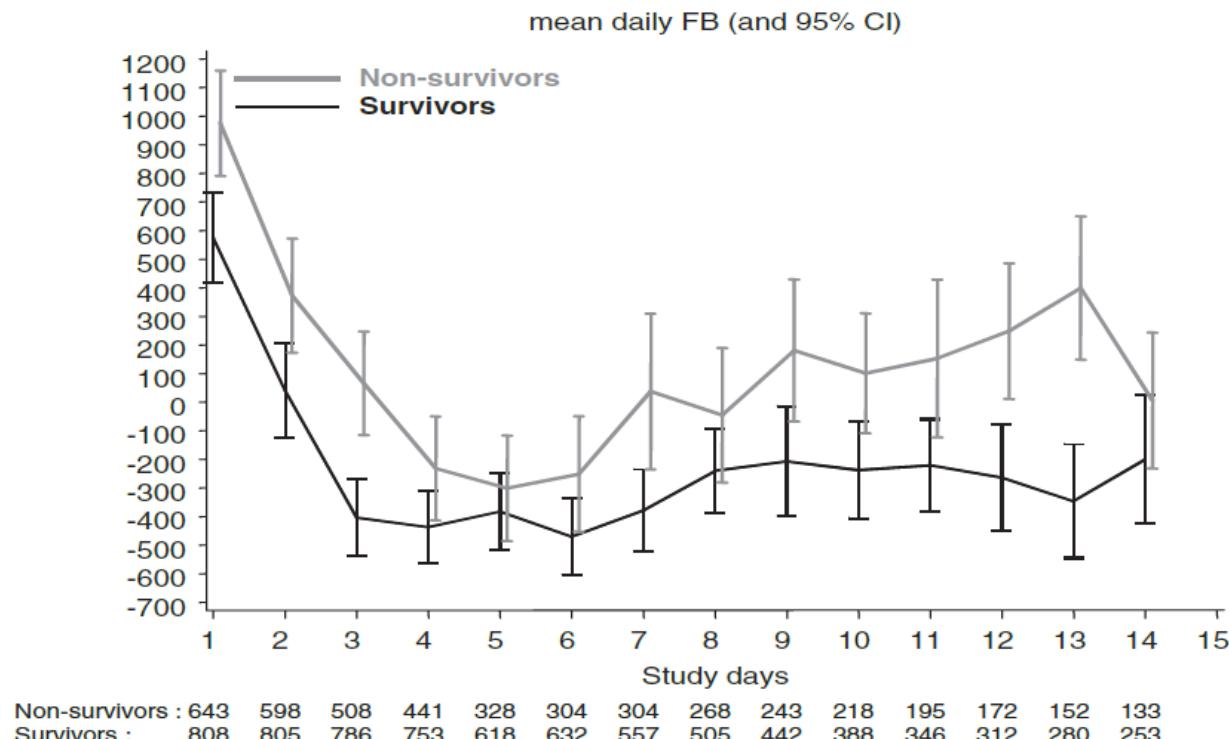
- **Design:** Randomized, open-label, parallel-group, clinical trial of low CRRT dose-intensity vs. standard CRRT dose-intensity
- **Setting:** 5-10 hospitals in Canada, US and UK
- **Target Sample:** 100 patients

Eligibility: Adults on CRRT < 24 hrs, anticipated to remain on CRRT for > 48 hours

Primary endpoint of the WISDOM pilot trial

- The primary outcome will be the **difference in delivered dose-intensity** between the standard and lower dose-intensity groups. The pilot trial will **target the ability to achieve a minimum difference of 10 mL/kg/hr** in delivered dose-intensity.
- This will be an important proof-of-concept endpoint for scaling to a larger multi-centre trial.

The RRT Fluid prescription



- The 2012 Guidelines provide no specific direction regarding optimal fluid target goals when delivering RRT for AKI

*“Provide RRT to achieve the goals of electrolyte, acid-base, solute, and **fluid balance** that will meet the patient’s needs. (Not Graded)”*

Achievement of a negative fluid balance associates with better outcomes

Do these data support aggressive ultrafiltration in patients with AKI?

- A less positive fluid balance may be a marker for a healthier patient
 - Sicker patients are more likely to receive more fluid
 - Non-oliguric patient with AKI often closer to recovery than someone oliguric
- Ultrafiltration has risks
 - Iatrogenic hypotension → decreased organ perfusion

Proactive prescription-based fluid management vs usual care in critically ill patients on Kidney Replacement Therapy

Probe-Fluid

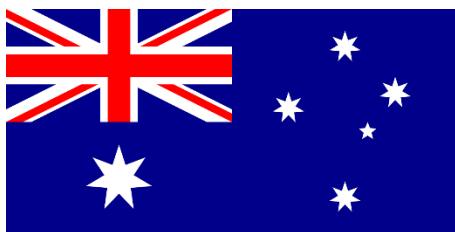
Fluid management strategies in AKI

ClinicalTrials.Gov NCT05473143

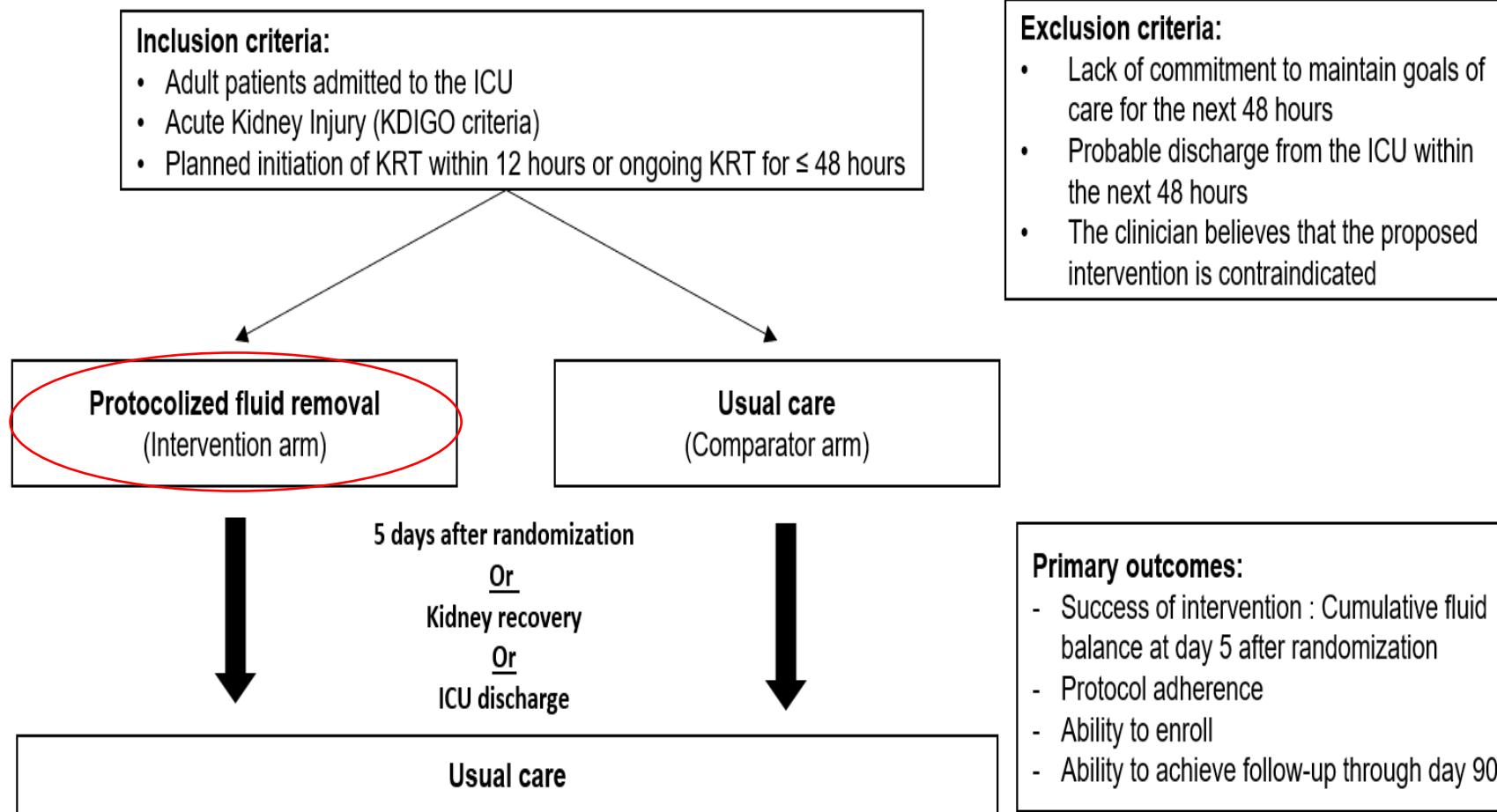
CRCHUM

CENTRE DE RECHERCHE
Centre hospitalier
de l'Université de Montréal

CIHR IRSC
Canadian Institutes of
Health Research
Instituts de recherche
en santé du Canada


The question

- In critically ill patients with severe AKI receiving RRT, is it possible to perform a pragmatic trial comparing a **proactive fluid management strategy aimed at minimizing fluid accumulation** to usual care and obtain a significant separation in fluid balance between arms ?


Study design

- Study design: Pilot open-label multinational randomized controlled trial
- Study sites: 15 sites
- Target sample size: 150 participants
- RECRUITMENT COMPLETE

Study flowchart

The intervention: Protocolized fluid removal

- Clinician must declare fluid balance target each day
- Goal is 2-3% reduction in body weight per day (ie, achieve a net negative fluid balance)
- Minimization of all fluid input (fluid stewardship)
 - Avoid “maintenance” IV infusion
 - Concentrate all IV solutions

When to stop RRT?

5.2.1: Discontinue RRT when it is no longer required, either because intrinsic kidney function has recovered to the point that it is adequate to meet patient needs, or because RRT is no longer consistent with the goals of care. (*Not Graded*)

A Conservative Dialysis Strategy and Kidney Function Recovery in Dialysis-Requiring Acute Kidney Injury

The Liberation From Acute Dialysis (LIBERATE-D) Randomized Clinical Trial

Kathleen D. Liu, MD, PhD, MAS; Edward D. Siew, MD, MSCI; Delphine S. Tuot, MDCM, MAS; Anitha Vijayan, MD; Gonzalo Matzumura Umemoto, MD; Bethany C. Birkelo, DO, MSCI; Benjamin J. Lee, MD, MAS; Y. Diana Kwong, MD, MAS; Ian E. McCoy, MD, MS; Kevin Delucchi, PhD; Hanjing Zhuo, MPH; Chi-yuan Hsu, MD, MSc

Setting:

Four-site study in the US

January 2020–March 2025

221 participants

LIBERATE-D Eligibility

- Inclusion criteria:
 - ≥ 18 years of age
 - Severe AKI-D due to ATN
 - Not requiring vasopressor support
 - Plan for intermittent dialysis
 - Baseline eGFR ≥ 15 mL/min/1.73 m²
- Exclusion criteria:
 - Non-traditional indication for dialysis
 - Complete nephrectomy as cause of AKI-D
 - Kidney transplant during index hospitalization
 - Dialysis > 3 months
 - Decompensated heart failure requiring left ventricular assist device or continuous inotropic support
 - Mechanical ventilation via endotracheal tube
 - Hypoxemia requiring significant oxygen support

LIBERATE-D: Interventions

Stratification by site and eGFR $\leq/ > 45$ mL/min/1.73 m²

Conservative strategy: “Aim to defer”

Dialysis only of ≥ 1 of the following:

BUN > 112 mg/dL

Hyperkalemia

Severe metabolic acidosis

Pulmonary edema

Clinician judgement

Conventional Strategy: “Plan to dialyze”

HD three times per week unless:

CrCl > 20 mL/min

Urine output > 1 L/d (> 2 L/day with diuretics)

Inter-dialytic decline in serum creatinine

LIBERATE-D: Baseline characteristics

Category	Conservative Dialysis (n=110)	Conventional Dialysis (n=110)
Age, median (IQR), y	55 (43–67)	59 (48–73)
Male, %	64%	71%
White, %	53%	68%
Medical service at admission, %	65%	65%
ICU at randomization, %	40%	39%
Vasopressors before randomization, %	74%	77%
Charlson CI	3 (1–5)	4 (2–6)
Heart failure history, %	27%	22%
Diabetes, %	40%	33%
Cause of AKI – Ischemia, %	65%	70%
Cause of AKI – Nephrotoxin, %	56%	50%
Cause of AKI – Sepsis, %	48%	50%
Baseline eGFR, mean	65.0	64.5
Urine output day prior	238	260

LIBERATE-D: Outcomes

Outcome	Conservative Dialysis (n=109)	Conventional Dialysis (n=109)	Difference (95% CI)	P value
Kidney recovery at discharge, %	70 (64.2)	55 (50.5)	13.8 (0.8–26.8)	0.04
Dialysis / wk, median	1.8 (0–2.6)	3.1 (2.6–3.5)	−1.4 (−1.8 to −1.0)	<.001
Dialysis-free days to day 28	21 (0–28)	5 (0–21)	16 (5–27)	<.001
LOS after randomization, d	14 (8–26)	15.5 (10–28)	−1.5 (−5.8 to 2.8)	.43
In-hospital death, %	10/110 (9.1)	7/109 (6.4)	2.7 (−4.4 to 9.7)	.46
Kidney recovery at day 28, %	71/109 (65.1)	59/109 (54.1)	11.0 (−1.9 to 24.0)	.10
Death by day 28, %	14/110 (12.7)	7/109 (6.4)	6.3 (−1.4 to 14.0)	.11
Kidney recovery at day 90, %	72/108 (66.7)	63/108 (58.3)	8.3 (−4.5 to 21.2)	.21
Death by day 90, %	16/109 (14.7)	20/108 (18.5)	−3.8 (−13.7 to 6.0)	.45

Take home messages

- Acute RRT practice is hampered by limited evidence
- Since the last KDIGO guidelines in 2012, several RCTs have bolstered the quality of evidence but many gaps remain
- Ongoing research programs will shed further light on optimal CRRT dose and fluid prescription
- The recently-completed LIBERATE-D trial has demonstrated the effectiveness of applying a safe and successful RRT weaning strategy

Toronto, Canada

感謝您的關注
我樂意回答任何問題

Tel Aviv, Israel

New and Emerging Evidence in the Delivery of Renal Replacement Therapy in AKI

Ron Wald, MDCM MPH FRCPC

St. Michael's Hospital, Toronto, Canada

Tel Aviv Medical Center, Tel Aviv, Israel

Asian Pacific Congress of Nephrology

Taipei

December 5, 2025