
Updated Surveillance and Monitoring of Vascular Access Function

A/Prof Tan Chieh Suai - 陈确帅

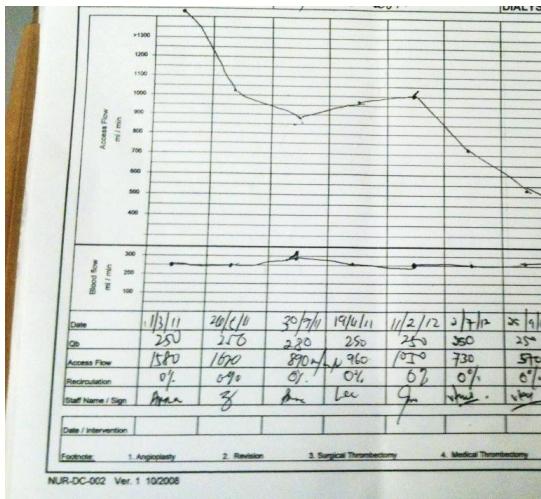
Head and Senior Consultant, Department of Renal Medicine, Singapore General Hospital
Clinical Associate Professor, Duke- NUS School of Medicine
Clinical Senior Lecturer, NUS YLL School of Medicine

Pathogenesis of stenosis

- Dialysis vascular accesses, arteriovenous fistula (AVF) and graft (AVG), are man-made structures created for the sole purpose of dialysis
- Neo-intimal hyperplasia within the dialysis vascular access circuit is the main pathophysiology reason for access failure

Roy-Chaudhury et al. Am J Kidney Dis 2008

Burden of vascular access dysfunction



- Missed hemodialysis session
- Hospitalisation
- Urgent interventions to restore patency
- Permanent loss of function requiring new access creation

Burden of dialysis dysfunction

Top 2 diagnosis for admission to renal department in SGH	2020 admission n = 1291	2021 admission n = 1263	2022 admission n = 2141	2023 admission n = 1878
1st	Other complications of cardiac and vascular prosthetic devices, implants and grafts = 523 (40.5%)	Other complications of cardiac and vascular prosthetic devices, implants and grafts = 590 (46.7%)	Other complications of cardiac and vascular prosthetic devices, implants and grafts = 446 (20.8%)	Other complications of cardiac and vascular prosthetic devices, implants and grafts =548 (29.1%)
2nd	Type 2 diabetes mellitus with established diabetic nephropathy = 103	Type 2 diabetes mellitus with established diabetic nephropathy = 161	Fluid overload =214	Fluid overload = 194

Is surveillance useful to prevent access dysfunction?

上医医未病之病
中医医将病之病
下医医已病之病

～黃帝：內經～

Surveillance with access flow

Intervention
to prevent

Thrombosis

KDOQI 2006 vs KDOQI 2019

KDOQI	Surveillance AVG	Surveillance of AVF
2006	<p>Recommend:</p> <ul style="list-style-type: none">• Intra access flow measurement• Directly measured or derived static venous dialysis pressure• Duplex ultrasound	<p>Recommend:</p> <ul style="list-style-type: none">• Direct flow measurement• Duplex ultrasound• Abnormal physical examination findings
2019	<p>KDOQI does not suggest routine AVG surveillance by measuring access blood flow, pressure monitoring or imaging for stenosis, that is additional to regular clinical monitoring, to improve AVG patency</p>	<p>Inadequate evidence for KDOQI to make a recommendation on routine AVF surveillance by measuring access blood flow, pressure monitoring or imaging for stenosis, that is additional to routine clinical monitoring to improve access patency</p>

KDOQI 2006 vs KDOQI 2019

KDOQI	Surveillance AVG	Surveillance ofAVF
2006	<p>Referral for diagnostic and Interventions:</p> <ul style="list-style-type: none">Not based on single abnormal reading but trendAn access flow rate less than 600 mL/minA venous segment static pressure (mean pressures) ratio greater than 0.5An arterial segment static pressure ratio greater than 0.75	<p>Referral for diagnostic and Interventions:</p> <ul style="list-style-type: none">Not based on single abnormal reading but trendAn access flow rate less than 400 to 500 mL/minA venous segment static pressure (mean pressures) ratio greater than 0.5
2019	<ul style="list-style-type: none">Does not recommend pre-emptive angioplasty of AVG with stenosis, not associated with clinical indicators to improve access patencyReasonable for patients with consistently persistent clinical indicators and underlying AV access stenosis to undergo pre-emptive angioplasty of their AV access to reduce risk of thrombosis and AV access loss	<ul style="list-style-type: none">Does not recommend pre-emptive angioplasty of AVG with stenosis, not associated with clinical indicators to improve access patencyReasonable for patients with consistently persistent clinical indicators and underlying AV access stenosis to undergo pre-emptive angioplasty of their AV access to reduce risk of thrombosis and AV access loss

ESVS 2018 vs KDOQI 2019

	Surveillance AVG	Surveillance of AVF
European Society of Vascular Surgery 2018	<p>It is recommended that vascular access surveillance is performed by flow measurement of arteriovenous grafts monthly</p>	<p>It is recommended that vascular access surveillance is performed by flow measurement of arteriovenous fistulas every 3 months.</p>
KDOQI 2019	<p>KDOQI does not suggest routine AVG surveillance by measuring access blood flow, pressure monitoring or imaging for stenosis, that is additional to regular clinical monitoring, to improve AVG patency</p>	<p>Inadequate evidence for KDOQI to make a recommendation on routine AVF surveillance by measuring access blood flow, pressure monitoring or imaging for stenosis, that is additional to routine clinical monitoring to improve access patency</p>

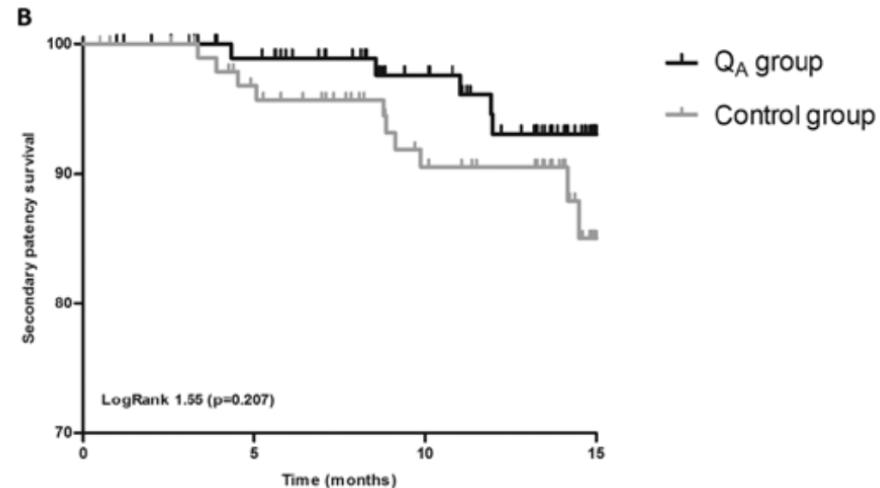
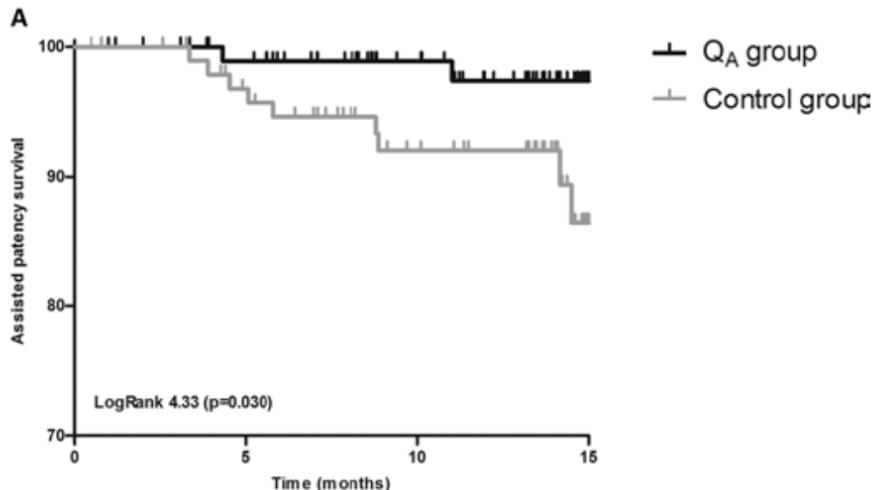
ESVS 2018 vs KDOQI 2019

	Surveillance AVG	Surveillance of AVF
European Society of Vascular Surgery 2018	<p>Referral for diagnostic and Interventions:</p> <ul style="list-style-type: none">• Not based on single abnormal reading but trend• An access flow rate less than 600 mL/min• A venous segment static pressure (mean pressures) ratio greater than 0.5• An arterial segment static pressure ratio greater than 0.75	<p>Referral for diagnostic and Interventions:</p> <ul style="list-style-type: none">• Not based on single abnormal reading but trend• An access flow rate less than 400 to 500 mL/min• A venous segment static pressure (mean pressures) ratio greater than 0.5
KDOQI 2019	<ul style="list-style-type: none">• Does not recommend pre-emptive angioplasty of AVG with stenosis, not associated with clinical indicators to improve access patency• Reasonable for patients with consistently persistent clinical indicators and underlying AV access stenosis to undergo pre-emptive angioplasty of their AV access to reduce risk of thrombosis and AV access loss	<ul style="list-style-type: none">• Does not recommend pre-emptive angioplasty of AVG with stenosis, not associated with clinical indicators to improve access patency• Reasonable for patients with consistently persistent clinical indicators and underlying AV access stenosis to undergo pre-emptive angioplasty of their AV access to reduce risk of thrombosis and AV access loss

Surveillance with pre-emptive angioplasty

- Balloon angioplasty, which is used to treat stenosis, also induced endothelial injuries, resulting in recurrent stenosis
- Balloon angioplasty may not correct the underlying etiology of neointimal hyperplasia
- Angioplasty is a mechanical solution for a “biological” problem
 - Recurrence post angioplasty is high

Patency rate with current angioplasty technique

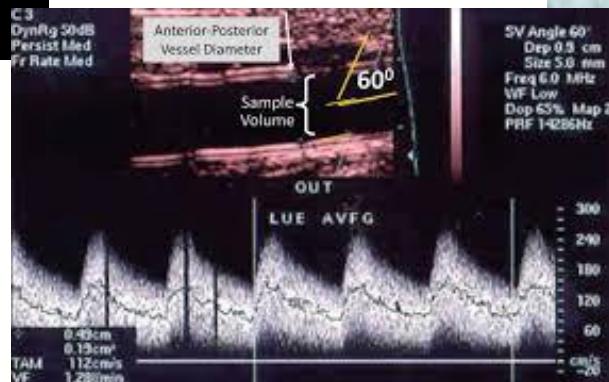
- Percutaneous transluminal angioplasty (PTA) has been the standard of care for AV access stenosis

	6-month Patency	
	AVF	AVG
Plain old balloon angioplasty (POBA)	61%	21%
High-pressure balloon	40%	23%
Cutting balloon	68%	38%

J Vasc Interv Radiol 2016;27:1518–1530 .

Surveillance + pre-emptive angioplasty

Patients: 196 chronic hemodialysis patients


Intervention: Monitoring + dialysis parameter

Control: Monitoring + dialysis parameter + ultrasound + transonic

Outcome: Reduced thrombosis rate but no difference in secondary patency

J Vasc Access 2016; 17 (1): 13-19

So should we do surveillance?

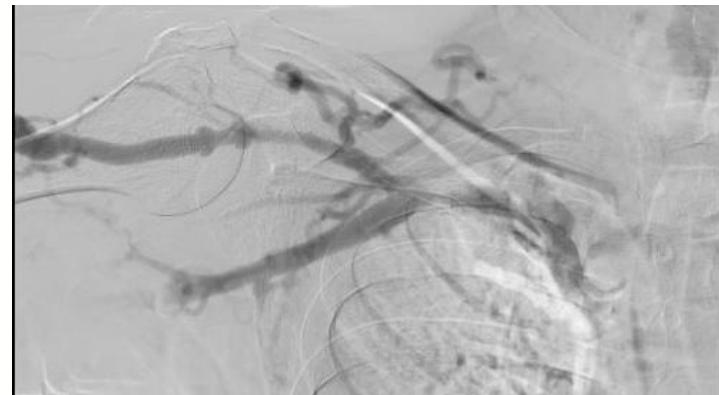
Monitoring vs Surveillance

Table 13.2. Clinical Indicators (Signs and Symptoms) Suggesting Underlying Clinically Significant Lesions During Access Monitoring

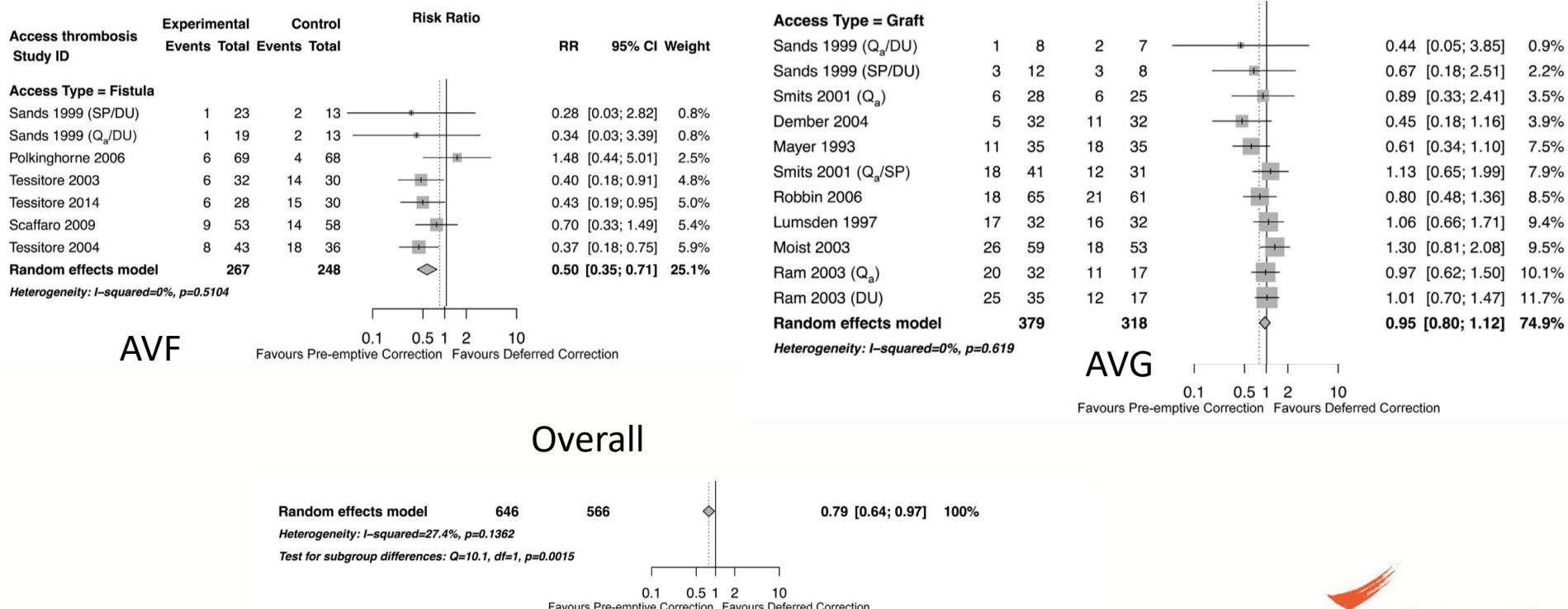
Procedure	Clinical Indicators	
Physical examination or check	<ul style="list-style-type: none">• Ipsilateral extremity edema• Alterations in the pulse, with a weak or resistant pulse, difficult to compress, in the area of stenosis• Abnormal thrill (weak and/or discontinuous) with only a systolic component in the region of stenosis• Abnormal bruit (high pitched with a systolic component in the area of stenosis)• Failure of the fistula to collapse when the arm is elevated (outflow stenosis) and lack of pulse augmentation (inflow stenosis)• Excessive collapse of the venous segment upon arm elevation	354,365 378 239 360 267
Dialysis	<ul style="list-style-type: none">• New difficulty with cannulation when previously not a problem• Aspiration of clots• Inability to achieve the target dialysis blood flow• Prolonged bleeding beyond usual for that patient from the needle puncture sites for 3 consecutive dialysis sessions• Unexplained (>0.2 units) decrease in the delivered dialysis dose (Kt/V) on a constant dialysis prescription without prolongation of dialysis duration	379 239 360

Clinical indications for intervention

- Arm swelling due to central vein stenosis
- Confirmation on angiogram
- Resolution of symptoms with treatment


DukeNUS
MEDICAL CENTRE

Dialysis indication for intervention


Avg BFR (ml/min)	Avg AP (mmHg)	Avg VP (mmHg)	Dialysis Time	Eff. Kt/V
250	-129	189	3:54	1.16
250	-116	200	3:55	1.39
280	-113	195	3:50	1.37
277	-128	234	3:51	1.44

- Physical examination
 - Pulsatile AVF
 - No arm swelling

- Severe subclavian vein stenosis on fistulogram

Meta-analysis – Surveillance prevent access thrombosis

Am J Kidney Dis. 2016;67(3):446-460

Monitoring vs Surveillance RCT

A multicenter randomized clinical trial of hemodialysis access blood flow surveillance compared to standard of care

The Hemodialysis Access Surveillance Evaluation (HASE) Study

COHORT

- 436 ESRD patients on hemodialysis
- arteriovenous fistula or arteriovenous grafts
- prospectively randomized using shift randomization

DESIGN

Control group

Standard of care
n = 207

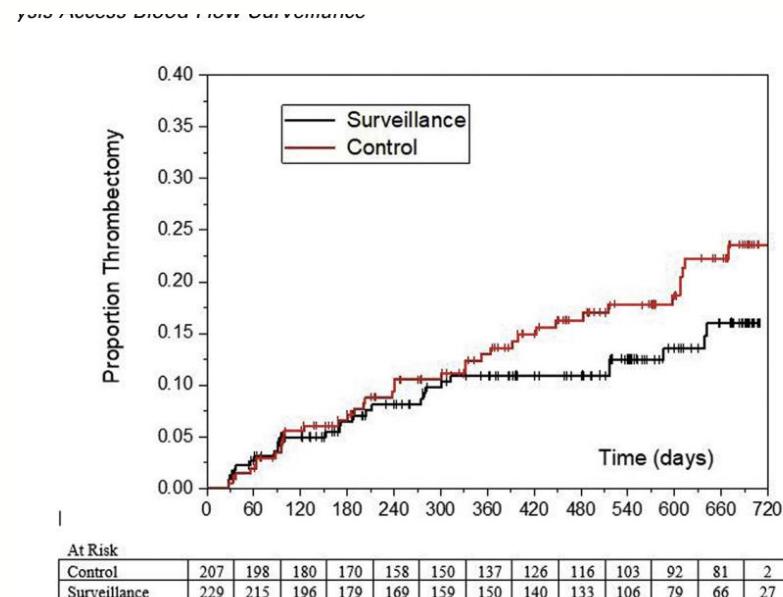
Surveillance group

standard of care +
monthly UDT-flow
n = 229

UDT = Ultrasound dilution technique

FINDINGS

HASE study primary and secondary outcome results

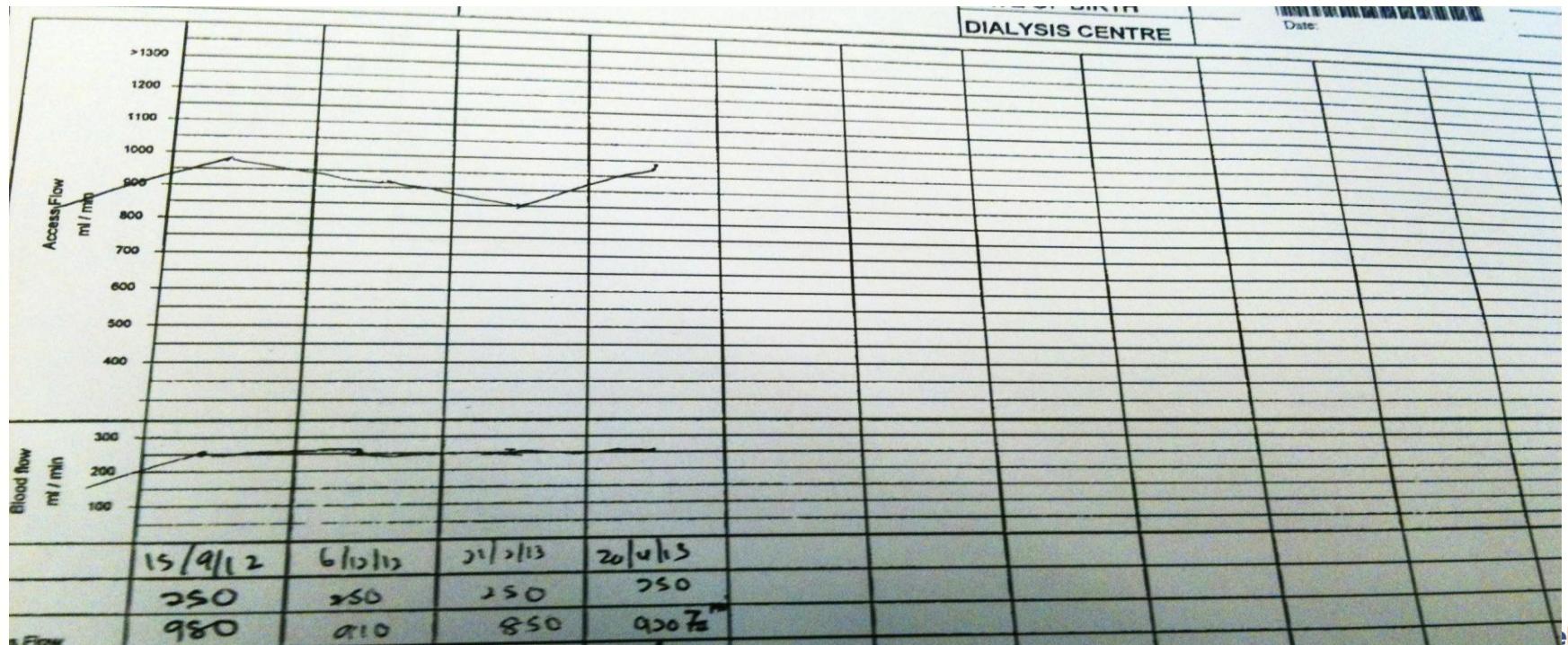

	Control	UDT	P-value
Number of Patients	207	229	
Total thrombotic events	47	28	
Thrombotic events / patient	0.227	0.122	0.012
Total number of procedures (with thrombectomies) / patient	0.981	0.991	0.95
Number of angiograms (without thrombectomies) / patient	0.715	0.834	0.18

CONCLUSION:

The use of UDT-flow measurement monthly AV access surveillance reduced per patient thrombotic events without significantly increasing angiographic procedures

Indication for referral

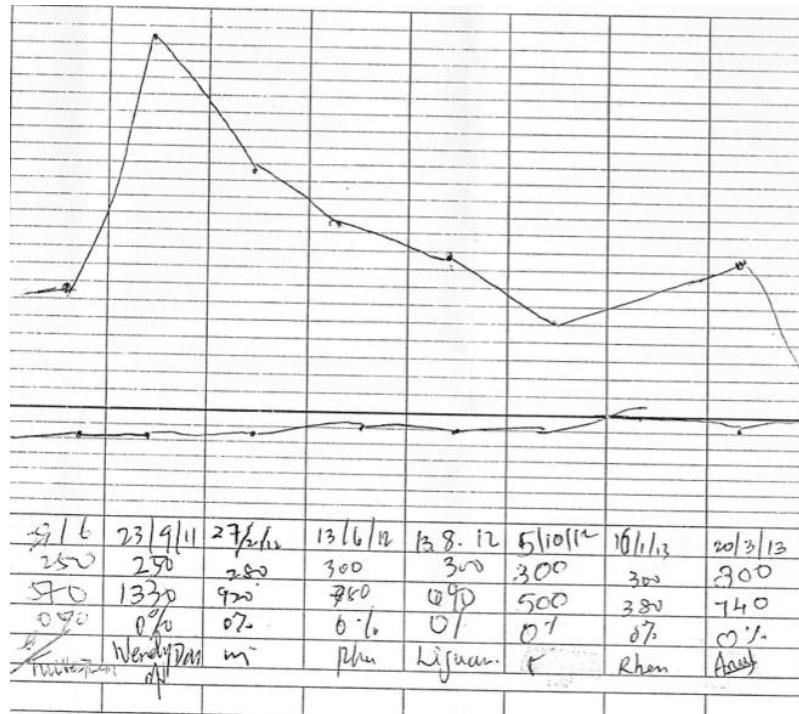
- Surveillance protocol
 - With monthly flow measurement
 - Intervention when
 - AVF flow < 500 mls/min
 - AVG flow < 600 mls/min
 - For flow > 1000mls/min, decline by more than 25% over 4 month
- Monitoring
 - As per KDOQI 2019


Kidney Int Rep. 2020 Aug 4;5(11):1937-1944.

Surveillance of dialysis access

- Not associated with improved longevity of dialysis access
- Reduce thrombosis rate and its downstream effect
 - Hospitalisation
 - Missed dialysis
 - Urgent procedures
- May be beneficial in large dialysis program where thrombosis rate is high

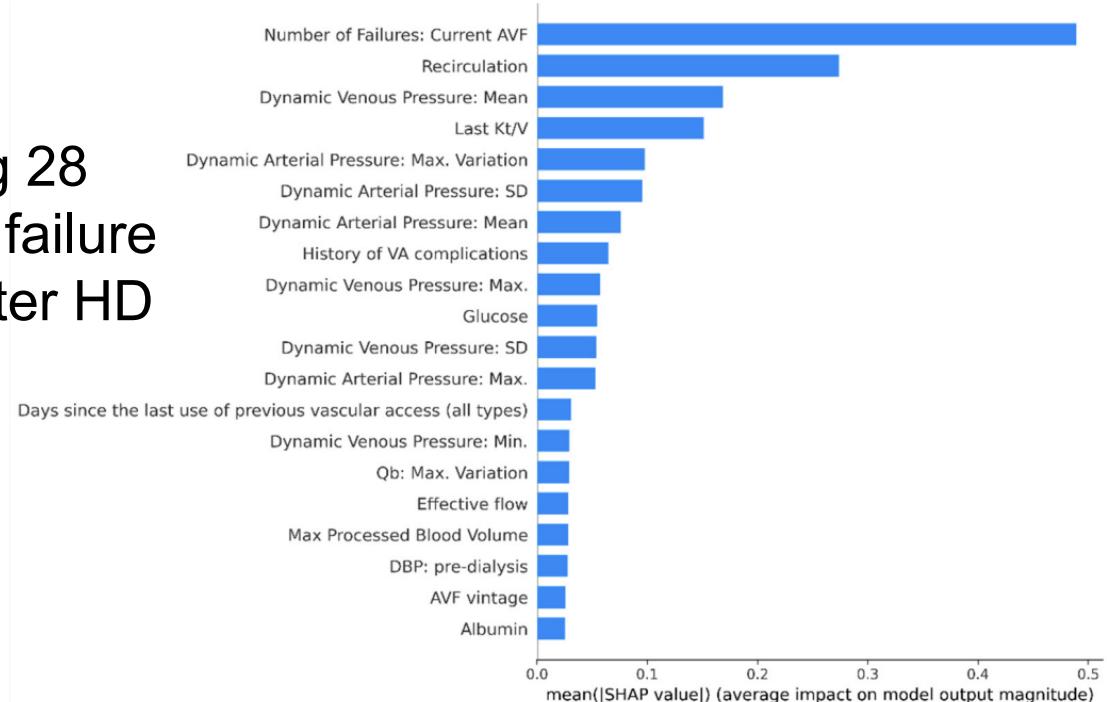
Thrombosis despite surveillance


Predictor of patency after successful thrombolysis

- N= 294 thrombosed access

Predictors	Primary patency	
	HR (95% CI)	P value
Access age	0.99 (0.99-1.00)	.02
Age	1.00 (0.99-1.02)	.74
Diabetes mellitus	1.16 (0.82-1.63)	.40
AVG vs AVF	1.58 (1.13-2.21)	<.01
Prior thrombolysis within 90 days	1.90 (1.21-2.98)	<.01
Alteplase vs urokinase	0.82 (0.58-1.16)	.27
No. of previous interventions	1.02 (0.97-1.08)	.46

J Vasc Surg. 2020 Apr;71(4):1333-1339


Flow trend post successful salvage

- Elective angioplasty before the next thrombotic episode?

Machine learning to predict access failure

- N= 13,369
- AVF Failure model using 28 variables to predict AVF failure within 3 month of in-center HD patient

Machine learning to predict thrombosis

- Monitoring for the low/moderate risk group
- Monitoring + Surveillance for the high/very high group

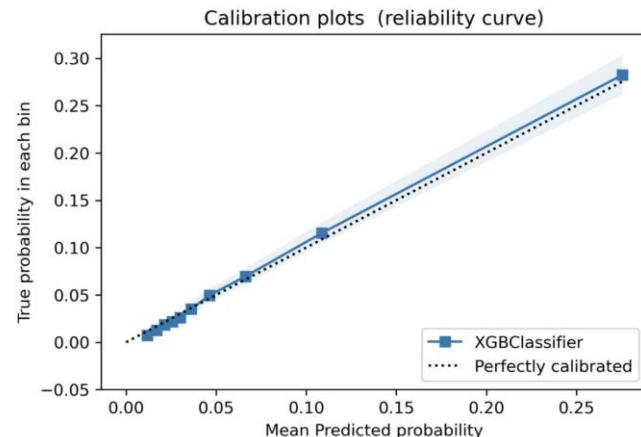
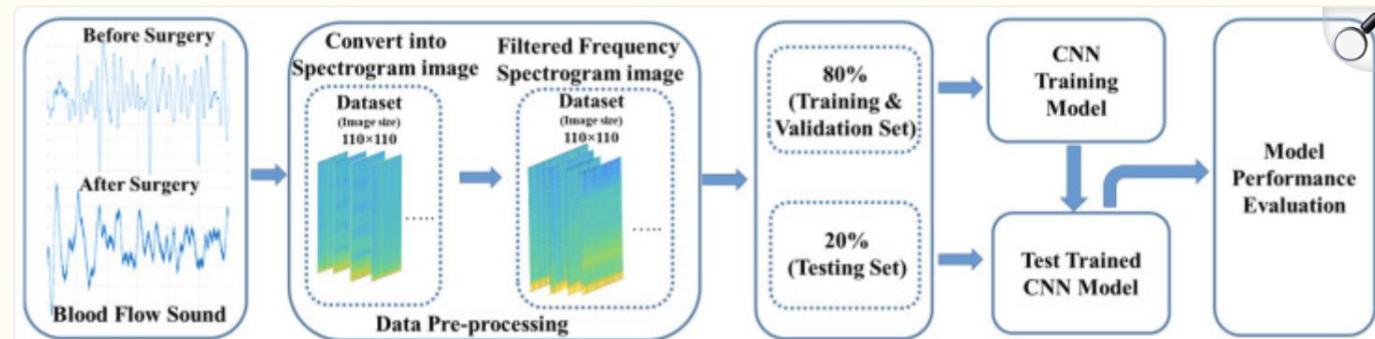
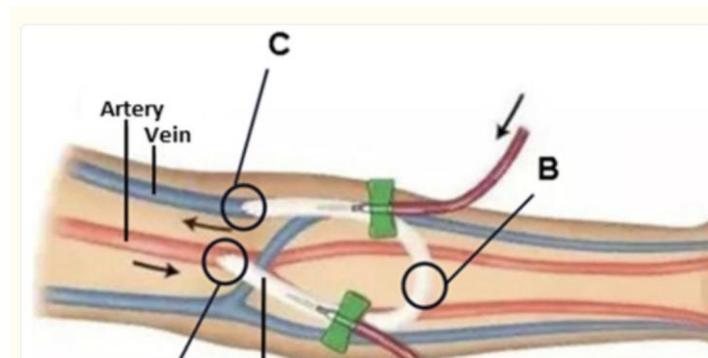
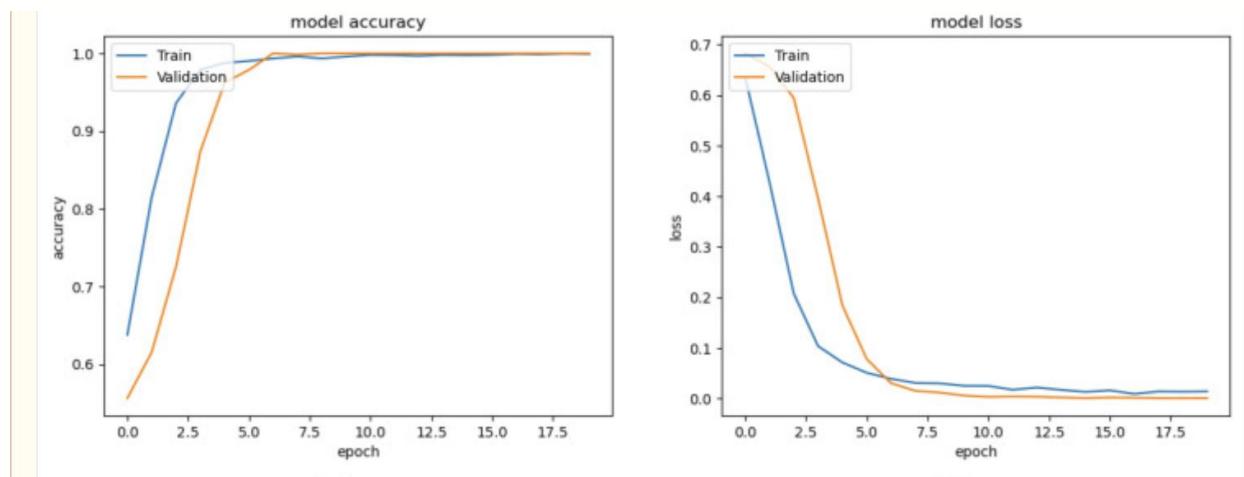




Table 2. Arteriovenous fistula risk score classes.

Risk Class	Prevalence (%)	AVF Failure Risk *	Risk Rate Ratio
Low	45.0 (95% CI: 44.9–45.1)	1.61 (95% CI: 1.57–1.64)	Ref.
Moderate	38.9 (95% CI: 38.8–39.0)	5.29 (95% CI: 5.22–5.36)	3.29 (95% CI: 3.2–3.38)
High	15.7 (95% CI: 15.7–15.8)	21.46 (95% CI: 21.23–21.68)	13.37 (95% CI: 13.04–13.72)
Very high	0.4 (95% CI: 0.3–0.4)	65.76 (95% CI: 63.16–68.45)	41.18 (95% CI: 39.29–43.17)

Blood flow sound signal to detect dysfunction


- Vascular phonoangiography
 - Convert blood flow sound acquired through auscultation into spectrogram
- Analysis with Deep learning model

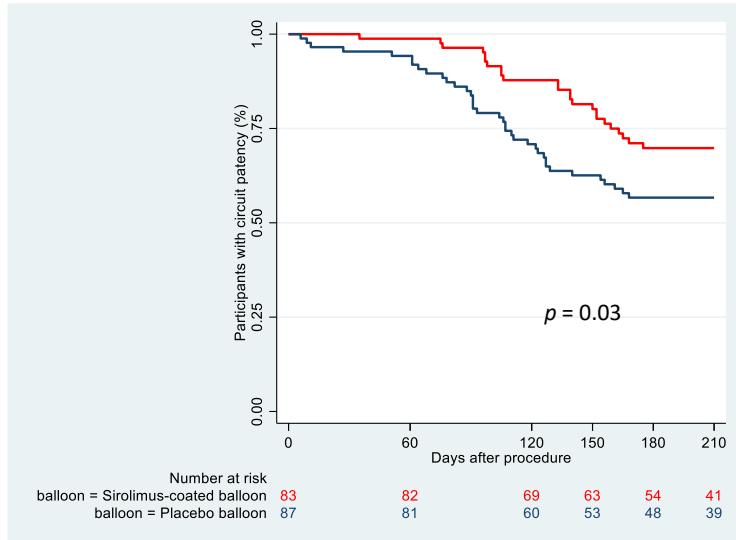
Sensors (Basel). 2024 Sep 12;24(18):5922.

Blood flow sound signal to detect dysfunction

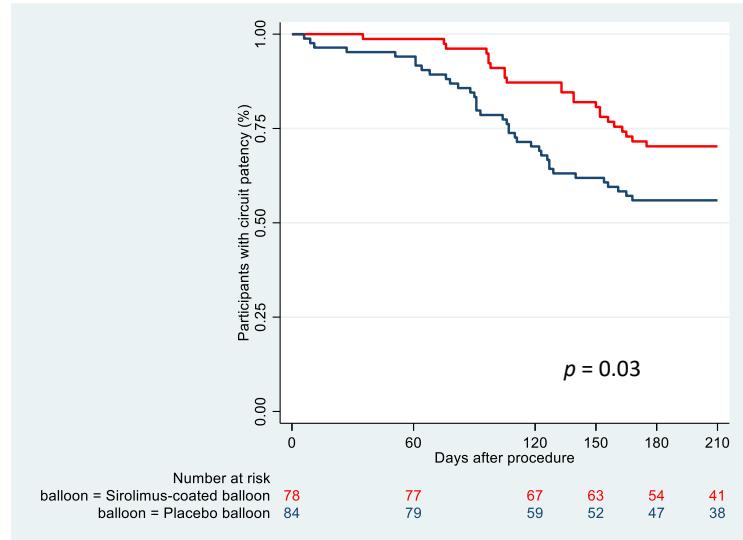
- Good performance of light weight Convulated Neural Network in detecting stenosis through sound signal picked up using a recording stethoscope

Sensors (Basel). 2024 Sep 12;24(18):5922.

Paclitaxel coated balloon for dialysis access


- Retard neo-intimal hyperplasia associated with barotrauma induced by plain balloon angioplasty

18 Randomised controlled trials that include AVF	Plain balloon pooled target primary patency rate (%)	Paclitaxel pooled primary target patency rate (%)
6 month follow up	56.3	77.0
12 month follow up	37.7	52.4


Adopted from J Am Heart Assoc. 2021 Dec 7;10(23)

Sirolimus coated balloon for dialysis access

Kaplan-Meier analyses of circuit patency during 6 months after index intervention (ITT analyses)

Kaplan-Meier analyses of circuit patency during 6 months after index intervention (PP analyses)

	90 days	150 days	180 days
Sirolimus-coated balloon	96.4 (95% CI 89.2, 98.8)	80.1 (95% CI 69.6, 87.3)	69.8 (95% CI 58.4, 78.7)
Placebo balloon	83.8 (95% CI 74.1, 90.0)	62.6 (95% CI 51.4, 71.9)	56.7 (95% CI 45.5, 66.4)

	90 days	150 days	180 days
Sirolimus-coated balloon	96.2 (95% CI 88.6, 98.7)	80.7 (95% CI 70.0, 87.9)	70.3 (95% CI 58.7, 79.1)
Placebo balloon	83.3 (95% CI 73.5, 89.8)	61.9 (95% CI 50.6, 71.3)	56.0 (95% CI 44.7, 65.8)

Conclusion

- Value of Surveillance of dialysis access
 - Debatable
 - Prevention of thrombosis
 - High risk population with high incidence of thrombosis
- Monitoring of access should be part of routine care
 - Physical examination
 - Dialysis parameters
- Artificial Intelligence may be useful to help us monitor dialysis access in future
- Improvement in angioplasty technology can potentially improve the longevity of dialysis access interventions

**“Do what you can, with what you have,
where you are” Theodore Roosevelt**

Thank You 謝謝

Tan.chieh.suai@singhealth.com.sg