

December 7, 2025

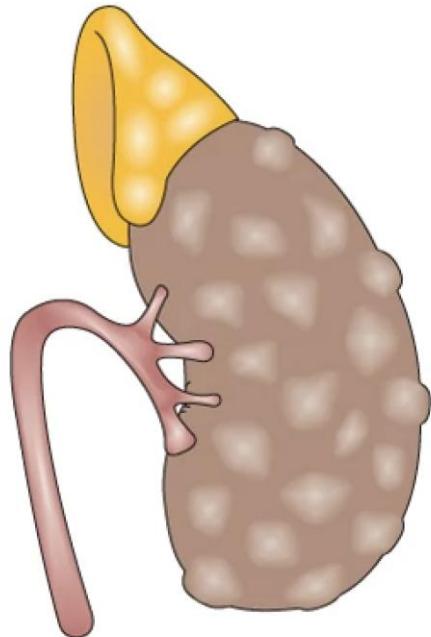
23rd Asian Pacific Congress of Nephrology (APCN 2025)

2025 Annual Meeting of Taiwan Society of Nephrology

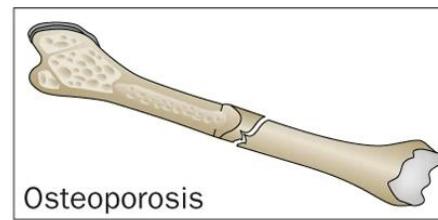
Aging-associated Immune Signature as a Predictor of Mortality in End-stage Renal Disease: Results from the Longitudinal iESRD Study

Kai-Hsiang Shu, TienYu Owen Yang, Graham Pawelec, Feng-Jung Yang, Wan-Chuan Tsai,
Yu-Sen Peng, Shih-Ping Hsu, Yi-Fang Chuang, Yen-Ling Chiu

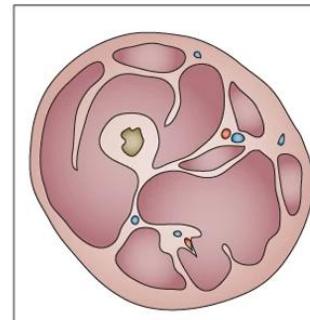
Far Eastern Memorial Hospital
Graduate Institute of Immunology, National Taiwan University


亞東紀念醫院
FAR EASTERN MEMORIAL HOSPITAL

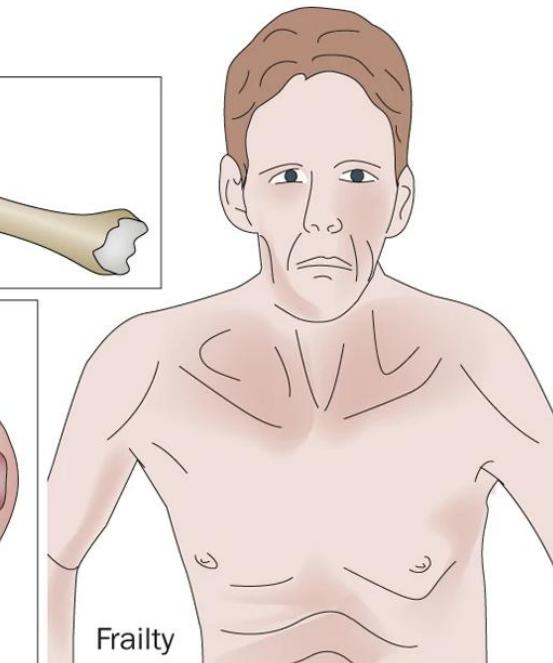
國立臺灣大學

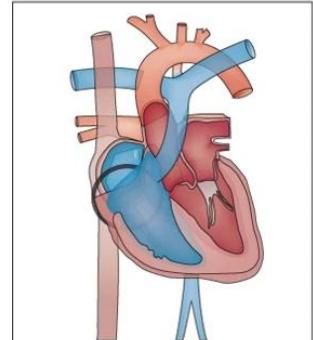

National
Taiwan
University

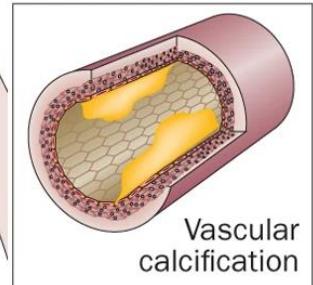
Chronic Kidney Disease



Premature Aging


Premature ageing phenotype


Osteoporosis


Muscle wasting

Frailty

Cardiovascular hypertrophy

Vascular calcification

Shared Immune Features in the Two Diseases

	Aging (in general population)	End Stage Kidney Disease
Chronic low-grade inflammation	Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty (<i>Nat Rev Cardiol</i> 2018)	Immune cell dysfunction and inflammation in end-stage renal disease (<i>Nat Rev Nephrol</i> 2013)
Decreased naïve and accumulation of differentiated T lymphocytes	Immune parameters in a longitudinal study of a very old population of Swedish people: a comparison between survivors and nonsurvivors (<i>J Gerontol A Biol Sci Med Sci</i> 1995)	Naïve and central memory T-cell lymphopenia in end-stage renal disease (<i>Kidney Int</i> 2006) Progressive loss of renal function is associated with activation and depletion of naïve T lymphocytes (<i>Clin Immunol</i> 2006)
Skewing to proinflammatory monocyte profiles	Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function (<i>Aging Cell</i> 2012)	Hemodialysis-related changes in phenotypical features of monocytes (<i>Sci Rep</i> 2018)
Adverse survival outcomes with altered immune composition	An immune risk phenotype , cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans (<i>J Gerontol A Biol Sci Med Sci</i> 2005)	?

Better Together Among Cell Subsets: single cell types versus immune cell pattern

Decreased Peripheral Naïve T Cell Number and Its Role in Predicting Cardiovascular and Infection Events in Hemodialysis Patients

BMC Nephrology

Premature aging of circulating T cells predicts all-cause mortality in hemodialysis patients

**SCIENTIFIC
REPORTS**

Altered monocytic phenotypes are linked with systemic inflammation and may be linked to mortality in dialysis patients

**nature
medicine**

A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring

Hypothesis

- Composite immune profiles independently predict survival outcome in end-stage kidney disease

Specific aims

- Quantification of T lymphocyte differentiation and monocyte subsets by flow cytometry
- Construction of composite immune indexes through Principal Component Analysis (PCA)
- Analyzing the relationship between composite immune indexes and survival in hemodialysis patients

The "Immunity in ESRD" Cohort

1 Country

2 Hospitals

409 Patients

3 Years of follow up
(2014-2017)

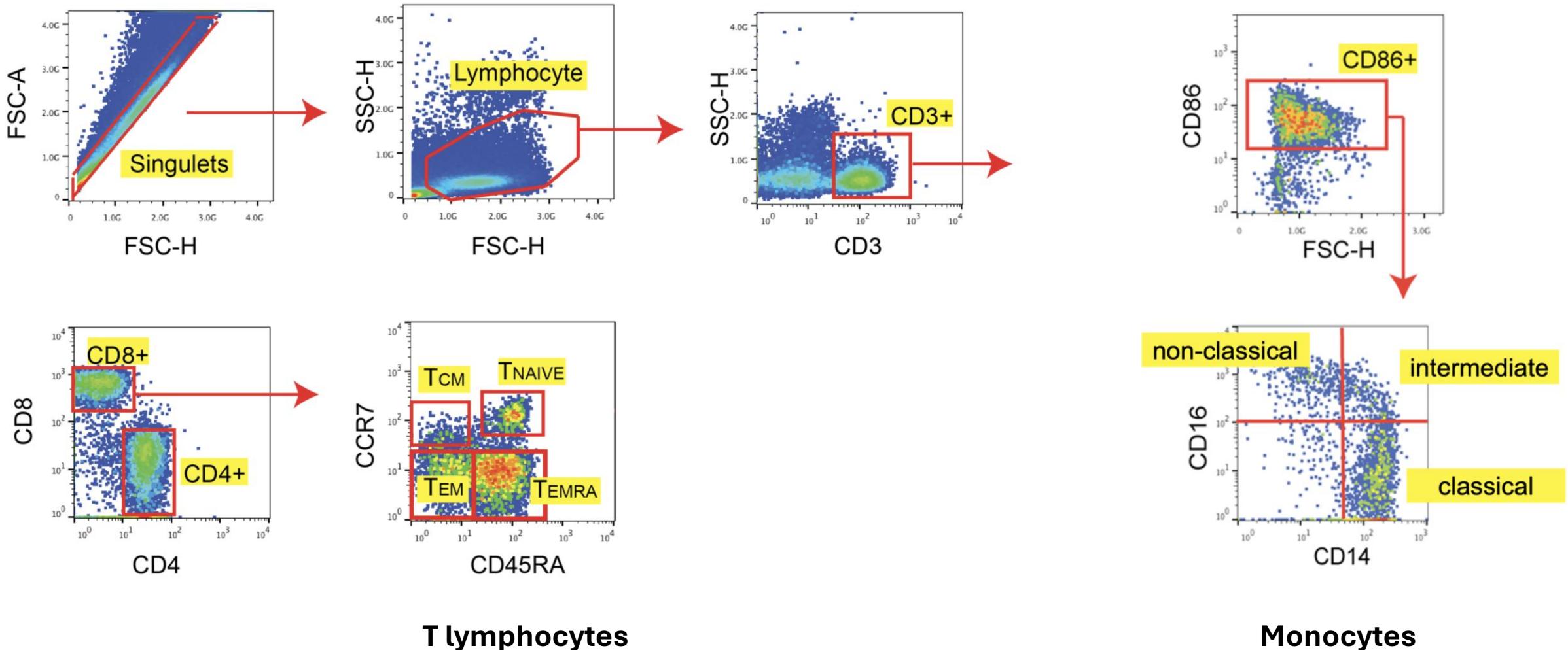


Table 1. Patient characteristics at baseline

	All (n=409)	Alive (n=334)	Dead (n=75)	P value	CMV seropositive (n=402)	CMV seronegative (n=7)	P value
Age (years)	61.7 (12.2)	59.9 (11.9)	69.3 (10.3)	<0.01	62.0 (12.0)	44.1 (11.9)	<0.01
Sex (male%)	50.6	51.2	48.0	0.70	50.8	42.9	0.72
Medical history							
Diabetes mellitus (%)	44.5	41.3	58.7	<0.01	45.0	14.3	0.14
Hypertension (%)	76.3	74.9	82.7	0.18	76.9	42.9	0.06
Duration of Dialysis (years)	6.23 (5.09)	6.16 (5.06)	6.55 (5.25)	0.56	6.20 (5.02)	8.27 (8.58)	0.55
Laboratory data							
Hemoglobin (g/dl)	10.9 (1.4)	11.0 (1.2)	10.4 (1.8)	<0.01	10.9 (1.38)	10.7 (1.09)	0.62
Platelet (x 10 ³ /µl)	190.4 (65.9)	191.5 (62.4)	185.5 (80.1)	0.48	190.0 (65.1)	215.0 (109.0)	0.57
WBC (/µl)	6407 (1962)	6403 (1918)	6421 (2160)	0.95	6407 (1960)	6393 (2207)	0.99
Neutrophil (/µl)	4205 (1625)	4195 (1570)	4248 (1863)	0.80	4202 (1626)	4362 (1729)	0.82
Lymphocyte (/µl)	1486 (537)	1492 (514)	1457 (635)	0.61	1488 (538)	1359 (543)	0.56
Monocyte (/µl)	397 (178)	390 (176)	429 (183)	0.09	399 (179)	317 (99)	0.07
Total cholesterol (mg/dl)	152 (36.7)	154 (37.1)	143 (33.5)	0.02	152 (36.6)	152 (44.4)	1.00
Triglyceride (mg/dl)	147 (95.1)	147 (94.0)	146 (100.7)	0.95	147 (95.3)	124 (86.0)	0.50
Albumin (g/dl)	4.02 (0.38)	4.08 (0.32)	3.77 (0.52)	<0.01	4.02 (0.39)	4.20 (0.26)	0.12
C-reactive protein (mg/dl)	0.290 (0.120-0.768)	0.271 (0.110-0.661)	0.533 (0.190-1.720)	<0.01	0.30 (0.120-0.770)	0.190 (0.020-0.74)	0.30
CMV IgG (U/ml)	382.1 (175.3-801.7)	375.8 (167.4-739.0)	469.4 (240.3-1021.0)	<0.01*	389.5 (181.0-812.8)	0.150 (0-0.150)	<0.01*

*Log-transformed Welch's t test was performed for CMV IgG. Continuous variables are shown as mean and standard deviation. Dichotomous variables are shown as percentage. CRP and anti-CMV IgG are shown as median with interquartile range. P values represent comparisons between surviving and deceased individuals. CMV, cytomegalovirus. To convert hemoglobin, albumin, and CRP g/dl to g/l, times 10. To convert total cholesterol mg/dl to mmol/L, times 0.0259. To convert triglyceride mg/dl to mmol/L, times 0.0113.

Gating Strategy for T Lymphocyte and Monocyte Subsets

Table 2. Baseline immune cell subset percentages and numbers

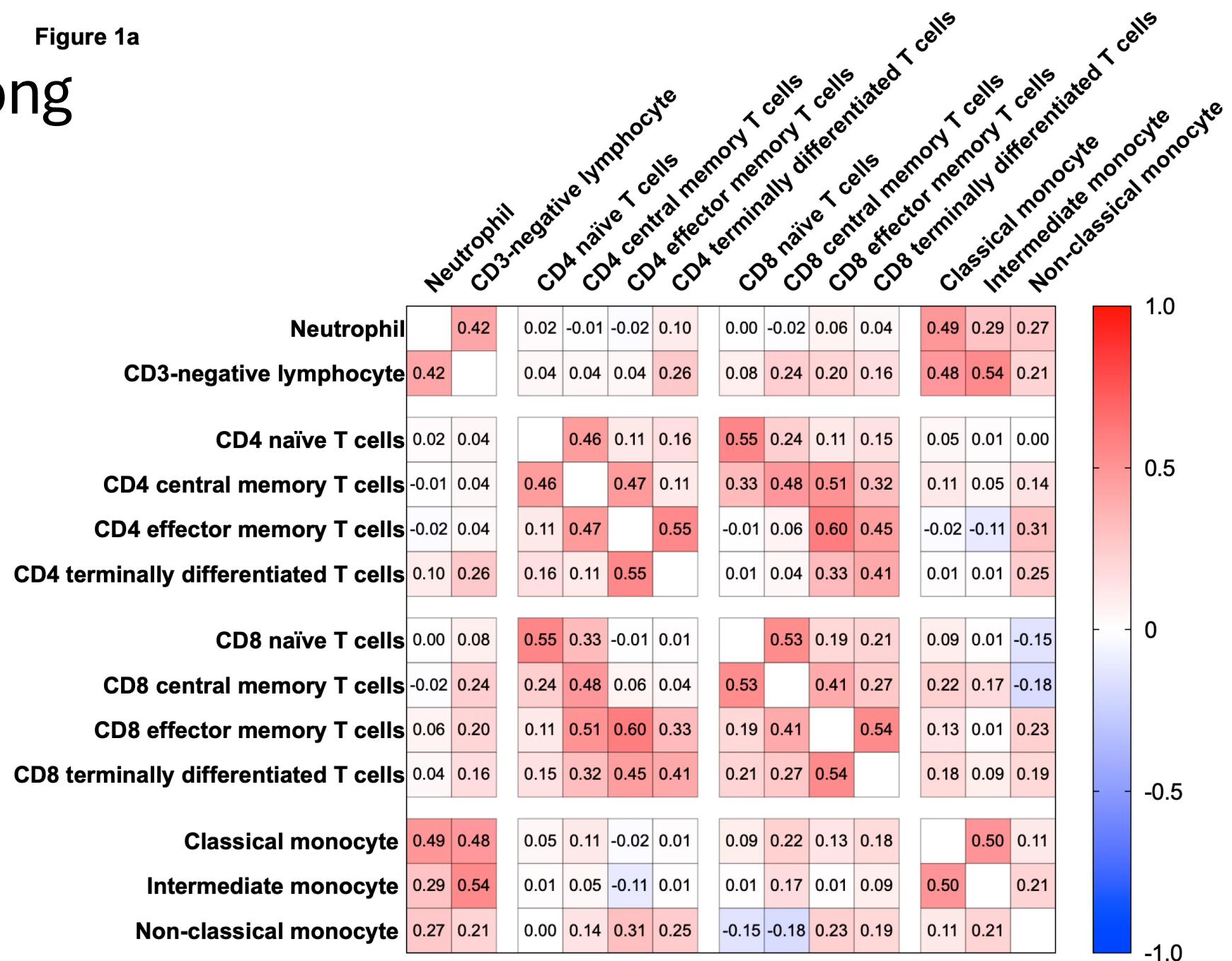
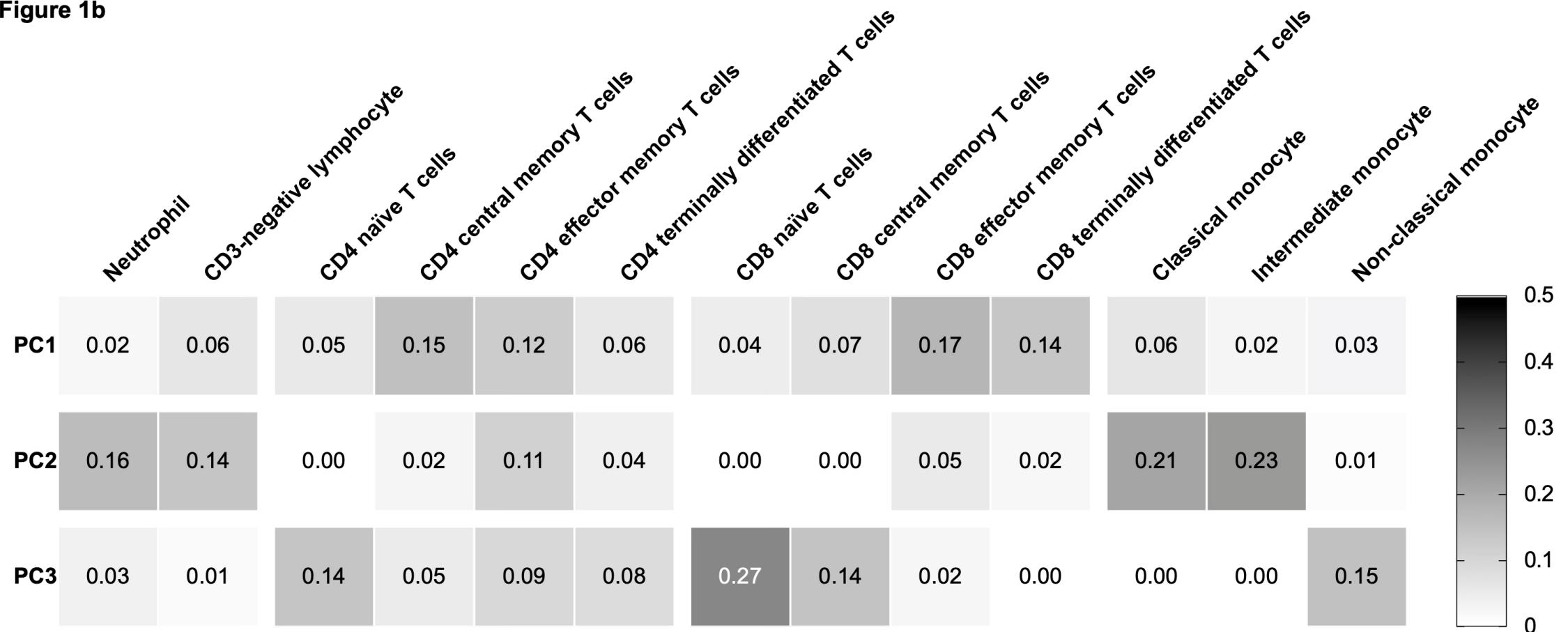

	All (n=409)		Alive (n=334)		Dead (n=75)		P value
Absolute number							
Neutrophil	4205	(1625)	4195	(1570)	4248	(1863)	0.80
CD3	907.4	(414.1)	918.4	(387.8)	858.6	(515.3)	0.26
CD3-negative lymphocyte	578.2	(288.1)	573.6	(287.1)	598.7	(293.7)	0.50
CD4	523	(232.6)	529.8	(218.5)	492.7	(287.2)	0.21
Naïve T cells	164.5	(111.9)	171.6	(110.2)	133.1	(114.3)	0.01
Central memory T cells	228.6	(116.2)	233.1	(113.1)	208.4	(127.8)	0.10
Effector memory T cells	120.6	(86.4)	116.4	(74.1)	139.6	(126.6)	0.04
Terminally differentiated T cells	9.3	(11.7)	8.7	(9.5)	11.7	(18.6)	0.04
CD8	275	(180.2)	277.6	(177.1)	263.6	(194.2)	0.54
Naïve T cells	54.5	(61.9)	59.4	(65.5)	32.7	(35.5)	<0.01
Central memory T cells	12.1	(13.9)	12.6	(14.4)	9.9	(11.5)	0.13
Effector memory T cells	102.5	(83.6)	101.2	(76.7)	108.3	(109.5)	0.51
Terminally differentiated T cells	105.8	(95.2)	104.3	(95.0)	112.7	(96.8)	0.49
Monocyte	397.4	(177.9)	390.3	(176.3)	429.1	(182.5)	0.09
Classical monocyte	264.4	(141.6)	259.1	(141.3)	287.9	(141.7)	0.11
Intermediate monocyte	40.4	(33.9)	39.2	(31.7)	45.7	(42.1)	0.13
Non-classical monocyte	56.3	(38.2)	56.1	(37.8)	57.4	(40.3)	0.78

Table 3. Association between immune cell subset numbers and age

	<i>p</i>	95% CI	P value
Absolute number			
Neutrophil	0.05	-0.05 to 0.14	0.36
CD3-negative lymphocyte	0.11	0.01 to 0.21	0.03
CD4	-0.11	-0.21 to -0.01	0.02
Naïve T cells	-0.26	-0.35 to -0.16	<0.01
Central memory T cells	-0.11	-0.20 to -0.01	0.03
Effector memory T cells	0.12	0.02 to 0.22	0.01
Terminally differentiated T cells	0.12	0.02 to 0.21	0.02
CD8	-0.07	-0.17 to 0.03	0.14
Naïve T cells	-0.49	-0.56 to -0.41	<0.01
Central memory T cells	-0.09	-0.19 to 0.01	0.08
Effector memory T cells	0.01	-0.09 to 0.11	0.89
Terminally differentiated T cells	0.14	0.04 to 0.24	<0.01
Monocyte	0.17	0.07 to 0.26	<0.01
Classical monocyte	0.13	0.03 to 0.23	0.01
Intermediate monocyte	0.14	0.04 to 0.23	0.01
Non-classical monocyte	0.11	0.01 to 0.21	0.02


Figure 1a

Correlogram Among Immune Cell Subsets

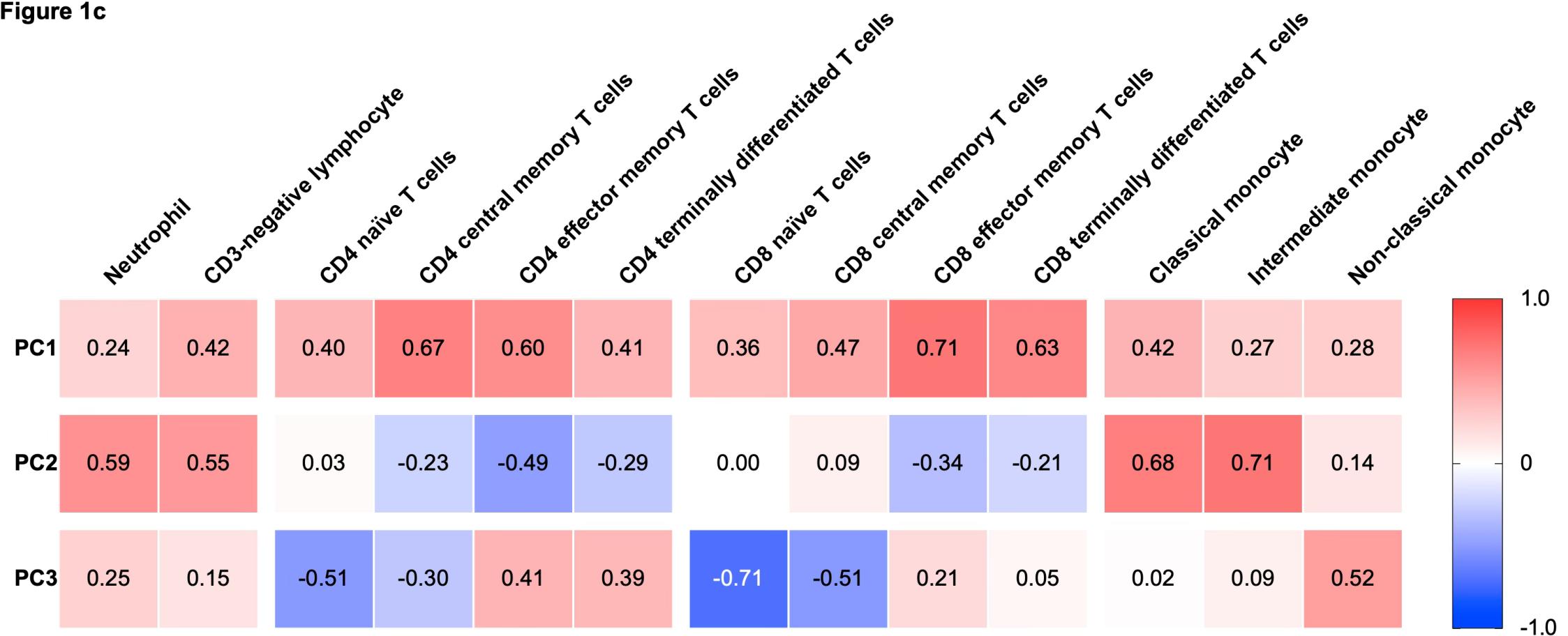

Composition of Each Principal Component (PC)

Figure 1b

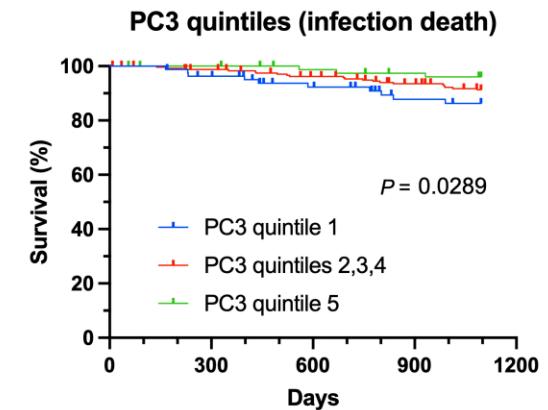
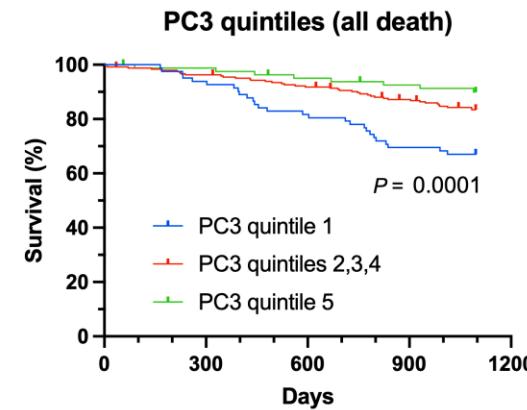
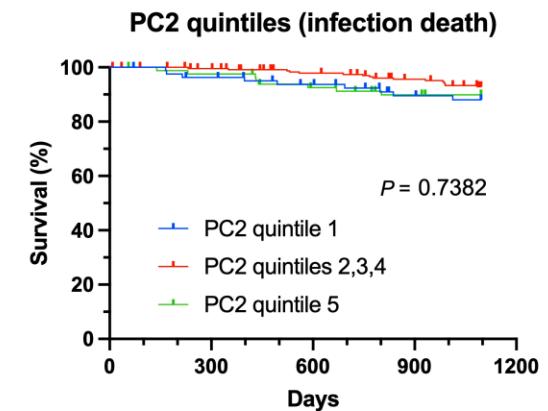
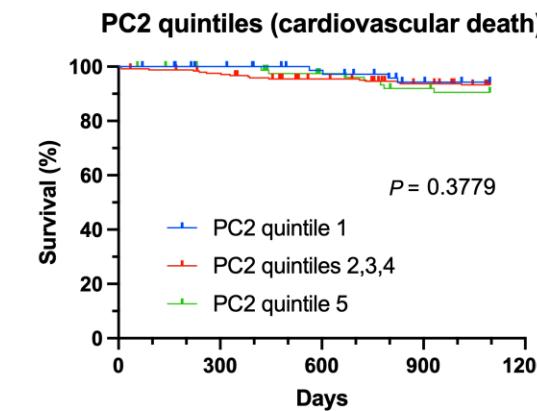
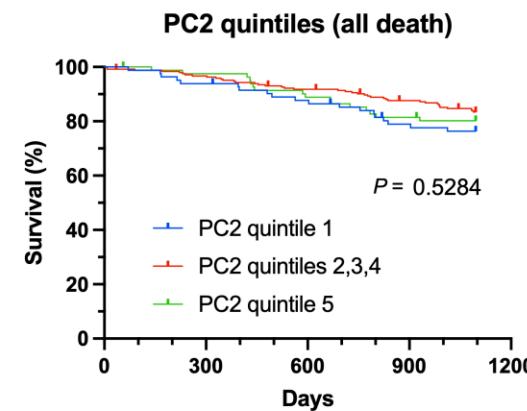
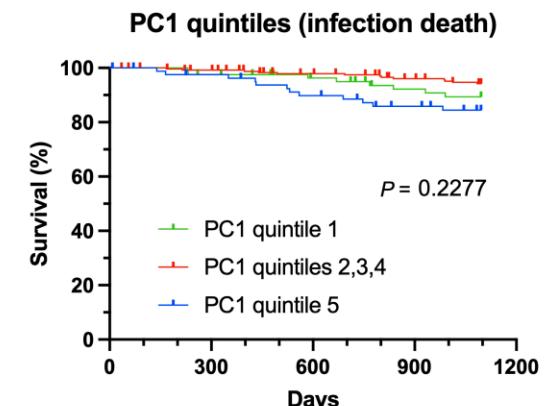
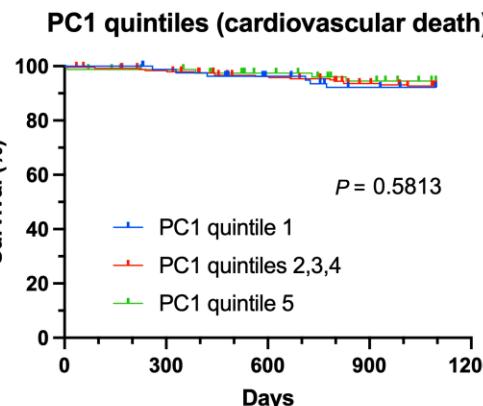
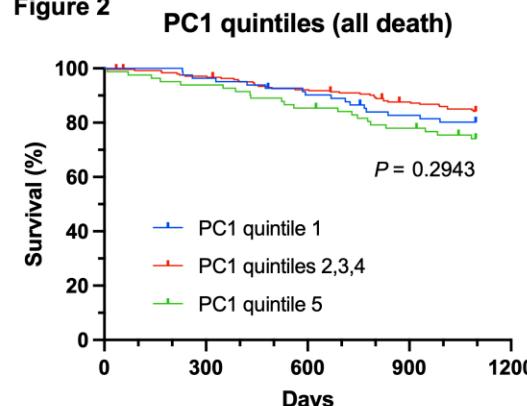
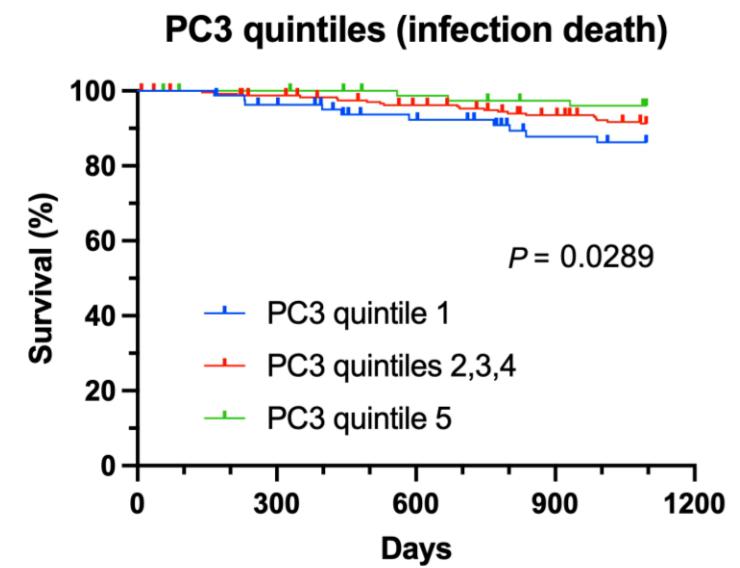
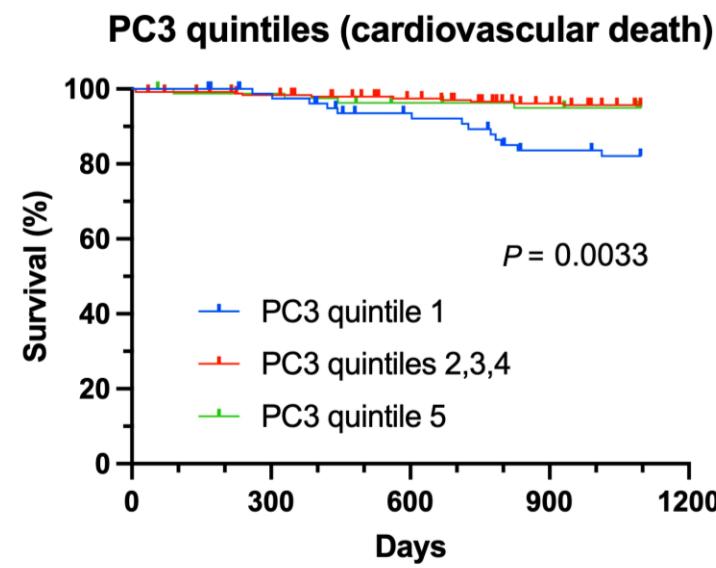
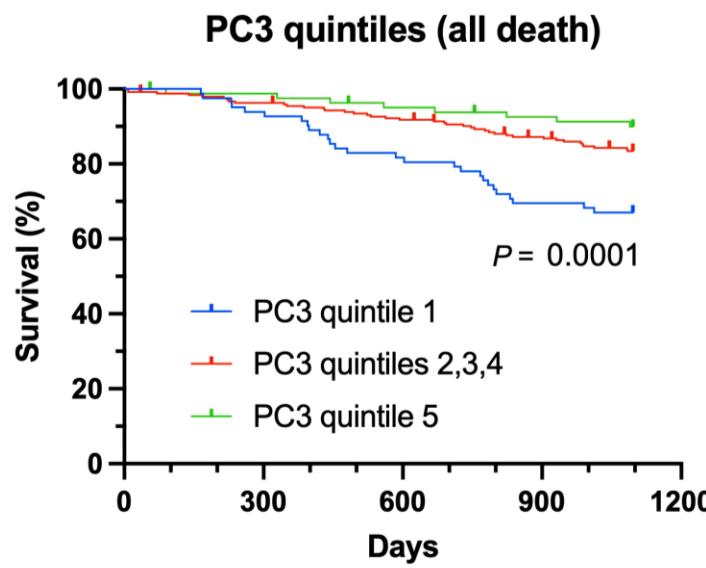








Correlation Between PCs and Cell Subsets

Figure 1c

Survival Curves Among Quintiles of Principal Components

Figure 2

Higher PC3 is Associated with Worse Survival

Higher PC3 is Associated with Worse Survival, Independent of Age

Table 4. Association between Principal Components and CMV IgG Titers with All-Cause Mortality, Cardiovascular Death, and Infection-Related Death.

	Univariable			Model 1			Model 2			Model 3*		
	HR	95% CI	P value	HR	95% CI	P value	HR	95% CI	P value	HR	95% CI	P value
All-cause death												
Principal Component 1	1.00	0.87 to 1.14	0.95	0.99	0.86 to 1.12	0.84	1.02	0.89 to 1.16	0.79	1.01	0.88 to 1.15	0.87
Principal Component 2	1.04	0.89 to 1.21	0.62	0.99	0.83 to 1.17	0.87	0.89	0.74 to 1.06	0.20	0.89	0.75 to 1.06	0.21
Principal Component 3	1.49	1.23 to 1.79	<0.01	1.43	1.15 to 1.78	<0.01	1.33	1.06 to 1.66	0.01	1.31	1.05 to 1.66	0.02
Log CMV IgG*	1.55	0.97 to 2.51	0.07	1.29	0.80 to 2.11	0.30	1.24	0.76 to 2.05	0.39			
Cardiovascular death												
Principal Component 1	1.19	0.97 to 1.43	0.08	1.18	0.96 to 1.42	0.09	1.17	0.95 to 1.40	0.11	1.17	0.96 to 1.41	0.10
Principal Component 2	0.82	0.62 to 1.08	0.17	0.82	0.61 to 1.10	0.18	0.73	0.55 to 0.99	0.04	0.73	0.54 to 0.98	0.04
Principal Component 3	1.61	1.18 to 2.19	<0.01	1.51	1.05 to 2.20	0.03	1.45	1.01 to 2.11	0.05	1.50	1.03 to 2.21	0.04
Log CMV IgG*	1.06	0.50 to 2.31	0.88	0.88	0.40 to 1.97	0.75	0.91	0.42 to 2.02	0.82			
Infection death												
Principal Component 1	0.90	0.72 to 1.11	0.35	0.88	0.70 to 1.08	0.26	0.93	0.74 to 1.14	0.51	0.89	0.70 to 1.11	0.33
Principal Component 2	0.98	0.76 to 1.24	0.87	0.90	0.68 to 1.17	0.46	0.86	0.65 to 1.12	0.28	0.86	0.65 to 1.13	0.28
Principal Component 3	1.51	1.14 to 2.01	<0.01	1.38	1.01 to 1.92	0.05	1.31	0.95 to 1.82	0.10	1.23	0.90 to 1.73	0.21
Log CMV IgG*	2.55	1.23 to 5.39	0.01	2.05	0.97 to 4.38	0.06	1.99	0.90 to 4.44	0.09			

*CMV seronegative subjects excluded. Univariable and multivariable Cox regression. Model 1 was adjusted for age, sex, and patient source. Model 2 was adjusted for age, sex, patient source, hemoglobin, diabetes mellitus, albumin, and C-reactive protein. Model 3 included all parameters from Model 2, with addition of log-transformed CMV IgG titers.

Conclusion

- Aging-associated immune cell patterns, characterized by loss of **naïve T cells** and accumulation of **differentiated T cells** and **non-classical monocytes**, independently predict mortality in hemodialysis patients.

Future Directions

- Evaluation of aging-associated immune cell pattern in **other chronic diseases**
- Further delineation of **mechanism** for immune cell pattern alterations, with possible **intervention**

Your Attention is Appreciated