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Thiamine Deficiency in HD Patients
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Reverse Epidemiology of CV Risk Factors in HD Patients
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Body Composition and Outcomes in CKD
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Prevalence of Volume Overload in CKD
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Volume Overload and MIA Syndrome in CKD
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Volume Overload and Clinical Outcomes in CKD
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“Not everything that counts can be counted, and

not everything that can be counted counts.”




Body Composition and Clinical Outcomes in CKD

Unadjusted Model 1 Model 2

Outcome

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value
All-cause mortality
BMI (Hvs L) 0.44 (0.23-0.85) 0.014 0.51 (0.26-0.99) 0.047 0.44 (0.22-0.87) 0.019
FTI(Hvs L) 0.98 (0.53-1.82) 0.945 0.69 (0.34-1.37) 0.287 0.52 (0.26-1.05) 0.067
LTI (H vs L) 0.23 (0.11-0.49) 0.000 0.30 (0.13-0.70) 0.005 0.34 (0.15-0.78) 0.011
CV events
BMI (Hvs L) 0.93 (0.58-1.50) 0.765 1.11 (0.69-1.79) 0.681 1.29 (0.78-2.13) 0.320
FTI (Hvs L) 1.56 (0.96-2.54) 0.073 1.17 (0.70-1.98) 0.550 1.03 (0.60-1.77) 0.916
LTI(Hvs L) 0.31 (0.18-0.53) 0.000 0.46 (0.25-0.86) 0.014 0.53 (0.28-0.98) 0.042

Lin TY, Hung SC et al. Kidney Int 93:733-740, 2018
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Misclassification of Obesity by BMI in CKD

Characteristics Group | Group Il Group Il Group IV P

n =063 n=28 n=139 n =96
Body composition
BMI (kg/m?) 31.3+3.3 29.7+27 23.3+t2.4 249122 <0.001
BF (%) 34.3+6.8 243159 204179 33.216.0 <0.001
LTI (kg/m?) 15.712.9 18.71+2.6 16.1+2.8 12.8+2.4 <0.001
Demographics %
Age (yr) 63.1+13.7 56.7 + 13.1 64.2+12.5 725+ 11% <0.001
Male sex, n (%) 49 (77.8) 17 (60.7) 93 (66.9) 65 (67.7) 0.321
DM, n (%) 43 (68.3) 15 (53.6) 46 (33.1) 44 (45.8) <0.001
CVD, n (%) 18 (28.6) 5(17.9) 27 (19.4) 27 (28.1) 0.283
Clinical parameters
eGFR (ml/min per 1.73 m?) 32.51+15.6 32.1+12.8 28.2+15.3 26.3+13.2 0.039
UPCR (g/9) 0.82 (0.33-2.45) 2.27 (0.29-5.17) 0.91(0.32-2.25) 0.84 (0.30-1.81) 0.404
Albumin (g/dl) 3.6+04 35105 3.610.5 3.6104 0.641
hs-CRP (mg/l) 5.4 (2.2-12.6) 3.9 (1.9-8.9) 3.0 (1.0-8.9) 4.5 (1.7-10.6) 0.034

Lin TY, Hung SC et al. Kidney Int Rep 3:447-455, 2018



Misclassification of Obesity and Mortality in CKD

Unadjusted Model 1 Model 2
Patient group
HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value
Group | 1 1 1
Group |l 0.89 (0.09,8.53) 0917 1.04(0.11,10.19) 0.975 0.80 (0.08, 8.06) 0.852
Group lll 219 (0.62,7.69) 0223 2.15(0.61,7.58) 0.234 2.65(0.72,9.75) 0.143

Group IV 6.06 (1.81,20.30) 0.003 4.61(1.36,15.71) 0.014 5.17 (1.44,18.60) 0.012

Lin TY, Hung SC et al. Kidney Int Rep 3:447-455, 2018



Limitations of BMI-based Definition of Obesity

BMI-based definition of obesity

BF% >25% in males
or >35% in females

Normal BMI
No excess fat mass

f

Normal BMI
Excess fat mass

Obesity

No excess fat mass

-

Obesity
Excess fat mass

Normal weight obesity

Hung SC 2025




Normal Weight Obesity and Outcomes in CKD
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Gut Microbiota and Body Composition in HD Patients

OUT-level, "P = 0.001 vs. overweight/obesity; #P <0.05 vs. normal weight
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Nutritional Supplement in HD Patients with NWO

o o Patients assessed for eligibility
Trial profile (n=512)

Not meeting inclusion criteria (n=458)
Refused to participate (n=3)
Other reasons (n=0)

v

Patients randomized to treatment

(n=51)
A4
NutrltIOI:lal Nutritional Reg.Eﬂ;?E One can (237 m]) daily
counselling supplements @ calories 425 keal, 19.1g protein,
(QEPLI) (n=26) (e 3”‘“’: 22.7 g fat, 37.9 g carbohydrate
» Ineligible (n=1) Ineligible (n=1)
Voluntary withdrawal (n=1) Discontinued supplements (n=3)
Deceased (n=2) Deceased (n=1)
\d A4

Full analysis set (n=24) Full analysis set (n=25)
Per protocol set (n=21) Per protocol set (n=21)

Lin TY, Hung SC et al. Nephrol Dial Transplant 34 (Suppl 1):gfz103.SP382, 2019




Lean tissue mass (kg)

Nutritional Supplement in HD Patients with NWO
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Two Types of Malnutrition in CKD

Type-1 Mixed type Type-2

Inflammation

Non-inflammatory
CO mp O nents Peter Stenvinkel
Co-morbidity: None May be present Common
and severe

Stenvinkel P et al. Nephrol Dial Transplant 15:953-960, 2000



ISRNM Criteria of PEW

A state of decreased body stores of protein and energy fuels
diagnosed by 1 positive result in at least 3 of the following 4 categories

+ Alb <3.8 g/dL (BCG) . * Muscle loss 5% in 3 mos @
/
* Prealbumin <30 mg/dL * Reduced MAMC >10% ~ -
~ —~
» Cholesterol <100 mg/dL * Creatinine appearance ~ ~
Cachexia

SERUM CHEMISTRY MUSCLE MASS

ﬁ « BMI <23 g/dL - DPI <0.8 g/kg/day Q
* Weight loss 5% in 3 mos * DEI <25 kcal/kg/day

» Total BF% <10%

\
~N ~
SRS
BODY MASS DIETARY INTAKE NWO

Fouque D et al. Kidney Int 73:391-398, 2008



Sources of GDF-15
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Summary 1

* A higher BMI is paradoxically linked to lower mortality in CKD,
reflecting the benefit of greater lean body mass over fat.

« Many CKD patients exhibit excess body fat with normal BMI,
leading to misclassification of obesity by BMI.

« NWO in CKD is characterized by inflammation and sarcopenia.
Nutritional supplement does not improve nutritional status in CKD
patients with NWO.

 GDF-15 is associated with muscle wasting and anemia in CKD.
Therapeutic modulation of GDF-15 shows promise in cancer
cachexia and may translate to CKD-related cachexia.



Malnutrition and SARS-CoV-2 Vaccine Response in HD
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nutrition

“the substances that you take into your body as
food and the way that they influence your health”
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Ying and Yang of Nutritional Therapy in CKD

= Pk microbiota

Uremic toxins
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Gut Dysbiosis and Malnutrition in HD Patients

Observed Chao1 Shannon Simpson InvSimpson
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Malnutrition (SGA scores 1-5), Normal nutrition (SGA scores 6-7); 16S rRNA gene sequencing; OTU-level, all P <0.05

Lin TY, Hung SC et al. Nephrol Dial Transplant 36:1104-1111, 2021



Gut Dysbiosis and Malnutrition in HD Patients

P=0.021 Q
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Simpson Index
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Gut Dysbiosis and Mortality in HD Patients
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Non-survivors
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Lin YT, Hung SC et al. NPJ Biofilms Microbiomes 7:20, 2021




Gut Dysbiosis and Mortality in HD Patients
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Gut Dysbiosis in CKD

Increased intestinal

excretion of urea, uric i
acid, oxalate
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TMAO and Faster eGFR Decline in CKD

Crude Model 1 Model 2
OR (95% CI)  Pvalue  OR(95%CI)  Pvalue @ OR(95%CI) P value
TMAO, uM 1.43 (1.02-2.00)  0.039 1.54 (1.09-2.19)  0.016  2.42(1.36—4.32)  0.003
TMA, uM 1.26 (0.91-1.76)  0.167 1.32 (0.94-1.86)  0.109 1.34 (0.84-2.14)  0.226
Choline, uM 0.93 (0.67-1.28)  0.648  0.92(0.66-1.28)  0.628  0.94 (0.63—-1.41) 0.776
Carnitine, UM 0.75(0.54-1.04) 0.088  0.76 (0.55-1.06)  0.106  0.73 (0.49-1.09) 0.124
Y-Butyrobetaine, uM 0.92 (0.67-1.28)  0.628  0.90 (0.63-1.27)  0.541 1.09 (0.66—1.81)  0.741

(Fast eGFR decline is defined as a decrease in eGFR of >3 ml/min/1.73 m2/year)

Hung SC et al. Clin Nutr 44:239-247, 2025



TMAO and Faster eGFR Decline in CKD

Gene: PERMANOVA, P=0.013 A bbuA
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Mechanisms of TMA Production by Gut Microbiota

Death within 1-3 y after heart failure
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Effects of Low-Protein Diet on Afferent Arteriole
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Effects of Plant-Based Diets on CKD
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Plant-Based Diets and Hyperkalemia in CKD

Plant-based foods

Absorption rate
50%-60%

Plant-based foods may have
low absorption rate, net alkalizing effect,
and carbohydrate content encourages K*
shifts into intracellular space, minimizing
impacts on serum K*

Animal-based foods

Absorption rate
70%-90%

Animal-based protein has higher
absorption and net acid effect results
in higher amounts of K* remaining
in serum

Kidney Int 105 (Suppl 45):S117-S314, 2024

Processed foods

Absorption rate
90%

Potassium salts (often found in
processed foods) absorption rate
has been reported to be 90%
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Diet and Nutrition Interventions and Considerations
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Figure 1. Chronic kidney disease spectrum with nutritional disorders and nutritional interventions considered to be important during
each identified phase. Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate.

MacLaughlin HL et al. Am J Kidney Dis 79:437—449, 2022



Healthy Plant-Based Diets and CKM Syndrome in CKD

Model 1 Model 2

Variable

OR (95% CI) P value OR (95% CI) P value
CKM risk factors
Overweight/obese 0.850 (0.770, 0.939) <0.001 0.831 (0.748, 0.923) 0.001
Excess FM% 0.864 (0.789, 0.945) 0.001 0.851 (0.775, 0.934) 0.001
Central obesity 0.864 (0.790, 0.945) 0.001 0.859 (0.785, 0.940) 0.001
Hypertension 0.855 (0.764, 0.955) 0.006 0.845 (0.756, 0.945) 0.003
Triglycerides 2150 mg/dl 0.902 (0.827, 0.983) 0.019 0.895 (0.819, 0.978) 0.015
Glucose 2126 mg/dl 0.888 (0.805, 0.980) 0.018 0.885 (0.801, 0.978) 0.017
Malnutrition
Hypoalbuminemia 0.836 (0.738, 0.946) 0.005 0.820 (0.718, 0.937) 0.003
Low protein intake <0.6 g/kg/day 0.883 (0.810, 0.961) 0.004 0.884 (0.811, 0.963) 0.005
Low energy intake <25 kcal/kg/day 0.815 (0.741, 0.895) <0.001 0.812 (0.737, 0.894) <0.001
Hyperkalemia 0.919 (0.788, 1.072) 0.284 0.905 (0.767, 1.069) 0.241

Hung SC et al. J Am Nutr Assoc 44:651-660, 2025

(median eGFR 23.1 mL/min/1.73 m?)



Summary 2

« Gut dysbiosis is associated with malnutrition and death in dialysis
patients.

« Higher levels of TMAO is associated with faster e GFR decline in
CKD. bbuA- or cutC- containing gut microbes are crucial for
TMAQO production and may serve as biomarkers or targets for
personalized nutrition.

* In patients with advanced CKD, adherence to a healthy plant-
based diet was associated with a lower risk of CKM syndrome,
was more likely to achieve better nutritional status, and was not
linked to an increased risk of hyperkalemia.
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“Various putrefaction products of the intestine may be increased

in the blood in renal insuﬁficiency. They are phenp‘[es,- C_Vesoles,
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Gut-Derived Uremic Toxin: IS

Macrophage — Foam cell Atherosclerosis
. : LRCT

Gut microbiota Colonocyte ! Bile acid synthesis
\U 0 Uf 0
N ) C' . ?

f “//\:‘:}‘
% <o\ ;
Bacterial fermentati .
Im lism
Cholna TR : Liver Circulation
TOYPRORIND. SxoMcie Renal tubular cell T Nephrotoxicity

\ T Inflammation

L-Tyrosine = p-Cresol - T Tubulointerstitial fibrosis

Urea -» Ammonia

Threonine »H,S —

Inflammatory cytokines/
Profibrotic molecules

BacterialILPs

04 “% %\f ' translocation

T Chronic inflammation
T cvD
1 Mortality

Ramezani A et al. Am J Kidney Dis 67:483—498, 2016



HEMO Study: PCS & IS Not Associated with CV Outcomes

Table 2| Association of uremic solutes with outcomes in the Hemodialysis (HEMO) study

Model 2
Model 1 Adjusted: age,
Unadjusted sex, race

Model 3
Adjusted: model 2
+ comorbidity +

clinical + labs
+ residual kidney
function

Model 4 (final)

+ nutritional
parameters

Adjusted: model 3

Model 5
(additional
analyses)
Adjusted: model 4
+ TMAO +
ADMA + SDMA

HR (95% Cl) P-value HR (95% CI) P-value HR (95% Cl) P-value HR (95% Cl) P-value HR (95% CI) P-value

First CV event (events = 641; IR = 273.3)
PCS 095 (0.91-0.99) 0.03 0.96 (0.92-0.99) 0.01 0.98 (0.94-1.01) 0.14 0.98 (0.94-1.02) 0.24 0.97 (0.93-1.01) 0.16
IS 0.91 (0.86-0.97) 0.005 0.95 (0.88-1.01) 0.12 0.99 (0.92-1.07) 0.8 0.99 (0.92-1.07) 0.83 0.99 (0.91-1.07) 0.74
HIPP  0.96 (0.91-1.01) 0.11 0.97 (0.93-1.02) 0.21 0.98 (0.94-1.03) 0.48 0.99 (0.95-1.04) 0.73 0.98 (0.94-1.03) 042
PAG 1.04 (0.97-1.11) 0.31 1.03 (0.96-1.10) 0.46 0.99 (0.92-1.05) 0.65 0.99 (0.92-1.06) 0.71 0.98 (0.91-1.05) 0.5
Any-cause death (events = 563; IR = 171.8)
PCS 094 (0.89-0.99) 0.02 0.93 (0.90-0.97) 0.002 0.96 (0.92-1.00) 0.05 0.96 (0.92-1.01) 0.1 0.96 (0.92-1.01) 0.13
IS 0.88 (0.82-0.95) <0.001 0.90 (0.83-0.97) 0.006 0.97 (0.90-1.05) 0.43 0.98 (0.91-1.06) 0.59 0.97 (0.90-1.05) 0.5
HIPP  0.96 (0.89-1.04) 0.36 0.98 (0.92-1.05) 0.58 1.03 (0.97-1.10) 0.33 1.04 (0.98-1.11) 0.17 1.04 (0.98-1.10) 0.24
PAG 1.09 (1.00-1.19) 0.04 1.09 (1.00-1.18) 0.04 1.05 (0.97-1.13) 0.21 1.06 (0.98-1.15) 0.12 1.06 (0.97-1.16) 0.17

HD (n = 1273)

Shafi T et al. Kidney Int 92:1484-1492, 2017



CVD in ESKD

Etiologic Factors

() Uremic toxin accumulation
Altered intermediary metabolism

Hormone deficiency
(erythropoietin, calcitriol,
and renalase)

Mediators

Sympathetic overactivity
Oxidative stress
Angiotensin ||
Endothelin
Inflammation

Anemia

Fluid overload
Phosphate

FGF-23?

Mechanisms

Vasomotor dysfunction

Arterial stiffness

Elastin degradation

Medial and intimal calcification
Neointimal hyperplasia

Left ventricular hypertrophy
Capillary-myocyte mismatch
Myocardial fibrosis

Coronary-artery
calcification

Left ventricular hypertrophy
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T

2

Calcification of Increased pulse-wave
arterial media velocity

Neointimal

| Graft stenosis

Himmelfarb J et al. N Engl J Med 363:1833-1845, 2010




Indoxyl Sulfate and HD Access Thrombosis

A Restenosis B
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306 patients undergoing angioplasty for dialysis access dysfunction. Median follow-up duration was 32 months.
262 (86%) had symptomatic restenosis, 153 (50%) had access thrombosis, and 25 (8%) had access failure.

Wu CC, Hung SC et al. J Am Soc Nephrol 27:1254-1264, 2016



Indoxyl Sulfate and Incident PAD in HD Patients

Predictor
Indoxyl sulfate (10 pig/mL increase)
BMI (kg/m?)
Systolic BP (10 mmHg increase)
TC (10 mg/dL increase)
HDL-C (10 mg/dL increase)
LDL-C (10 mg/dL increase)
Triglycerides (10 mg/dL increase)
TC:HDL-C
Calcium (mg/dL)
Phosphate (mg/dL)

Ln CRP (mg/ L)

PAD
1.19 (1.05-1.35)>
1.04 (0.94-1.14)
1.08 (0.90—1.29)
1.04 (0.96-1.13)
0.94 (0.75-1.17)
1.08 (0.98-1.19)
1.00 (0.97—1.03)
1.05 (0.93-1.18)
1.04 (0.68—1.61)
1.06 (0.86-1.31)

0.91 (0.67—1.24)

MACE

1.00 (0.90-1.12)
1.05 (0.97—1.14)
1.17 (1.00-1.36)
1.03 (0.96-1.11)
0.91 (0.76-1.11)
1.10 (1.00-1.21)P
1.00 (0.97-1.02)
1.01 (0.90-1.13)
1.61 (1.15-2.27)>
0.99 (0.81-1.22)

1.06 (0.82-1.37)

Lin TY, Hung SC et al. Toxins 12:696, 2020

Mortality
0.98 (0.90-1.07)
0.96 (0.90—-1.02)
1.04 (0.93—-1.17)
1.01 (0.95-1.07)
0.92 (0.79-1.07)
1.03 (0.96-1.11)
1.01 (0.99-1.03)
0.99 (0.90-1.10)
1.46 (1.12-1.89)*
0.93 (0.78-1.10)

1.31 (1.10-1.56)



Indoxyl Sulfate and PAD in CKD Animal Models
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Hung SC et al. Kidney Int 89:574-585, 2016



Mechanisms of Indoxyl Sulfate and PAD in CKD
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Dou L et al. Kidney Int 89:532-534, 2016



CENTRAL ILLUSTRATION: Pathological Characterization of Large Arteries
in Amputations for Critical Limb Ischemia

FEM-POP & INFRA-POP arteries
with 270% luminal stenosis

In ~73% of arteries, presence In a minority (<2%), luminal
of thrombi contributed compromise was due to restenosis

to luminal stenosis resulting from previous interventions

~33% of arteries had thrombi associated In the remaining ~67% of arteries,
with significant atherosclerosis thrombotic occlusion was associated
(PIT,FA,FC) with insignificant atherosclerosis

Peripheral arteries from 95 patients; 75 CLI; 20 amputations for other reasons.

Narula, N. et al. J Am Coll Cardiol. 2018;72(18):2152-63.




Malnutrition and Outcomes in Dialysis Patients with PAD

MALE All-cause death

Adjusted hazard ratio
Adjusted hazard ratio

0.5 % T T T T T

0 2 4 6 8 10 0 2 4 6 8 10
CONUT score _malnourished | CONUT score malnourished S

395 consecutive dialysis patients undergoing endovascular revascularisation for lower extremity PAD between 2005 and 2019. Adjusted
by age, sex, BMI, current smoking, dialysis vintage, DM, HTN, CAD, HF, CVA, Af, use of anti-platelet agent, B-blocker, RAAS inhibitor,
and statins. More than 80% of patients were malnourished, with 40.8% of patients having moderate to severe malnutrition.

Lin TY, Hung SC et al. Eur J Vasc Endovasc Surg 64:225-233, 2022



Conundrum of Nutritional Therapy in Dialysis Patients with PAD
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insufficiency Dietary protein
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Versari D et al. Diabetes Care 32 (Suppl 2):S314-S321, 2009



Summary 3

Uremic toxins, particularly those derived from the gut microbiota,
are central to complications of CKD. Among them, IS exhibits a
PAD-specific vascular toxicity.

Malnutrition markedly increases morbidity and mortality in dialysis
patients undergoing endovascular therapy for PAD.

Nutritional supplement, particularly protein rich in tryptophan, may
unintentionally raise IS levels and potentially exacerbate PAD.

Can we enhance nutritional status without increasing uremic toxin
burden in CKD patients with PAD?
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Skye SM et al. Cell Host Microbe 20:691-692, 2016



Oral Tryptophan Challenge Test (OTCT)
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Baseline-adjusted AUC of IS (mg/L x hour)

High Interindividual Variability of IS Production by OTCT
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SEROTONIN
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|IAA and Clinical Outcomes in CKD

Patient Survival (Event 29/120) RR (95% CI)

Indole-3 acetic acid 2.04 (1.05 to 3.95) 0.03
Indoxyl sulfate 1.05 (0.95 to 1.16) <0.4
p-cresyl sulfate 1.05 (0.97 to 1.12) 0.21
Major CV Event (Event 35/120) RR (95% CI) P Value
Indole-3 acetic acid 1.95 (1.09 to 3.50) 0.03
Indoxyl sulfate 0.99 (0.90 to 1.08) <0.8
p-cresyl sulfate 1.03 (0.96 to 1.10) <0.4

(mean eGFR 26 mL/min/1.73 m?)

Dou L et al. J Am Soc Nephrol 26:876-887, 2015



Comparison of Plasma IS and IAA During the OTCT
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Colonic Contribution to Uremic Solutes

Solute Name Colectomy/with Colon P Value
PCS 0.01 Not detectable in colectomy
a-N-phenylacetyl-L-glutamine 0.07 <0.05
IS 0.02 <0.05
indoxyl glucuronide 0.02 <0.10
HIPP 0.28 >0.4
IAA 0.57 >0.4
indolelactic acid 1.8 >0.4
L-kynurenine 2.0 >0.4

6 HD patients with total colectomy versus 9 HD patients with intact colon

Aronov PA et al. J Am Soc Nephrol 22:1769-1776, 2011



Summary 4

 Responses to nutritional therapy depend on its interactions with
gut microbiome and host genome.

e Current food-based dietary guidelines are not yet microbiome-
oriented.

 The results of OTCT can serve as a personalized dietary
guidance for patients with CKD. High IS/IAA producers should
avoid consuming foods that contain high levels of tryptophan.

* Nephrocentric and nutricentric views of nutritional management in
CKD can be integrated by applying this precision medicine
approach.



Gut Microbiome-Derived PCS and PS
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SGLT2i reduced microbiome formation of
uremic toxins such as p-cresol sulfate and
thereby their body exposure and need for
renal detoxification, which, combined with
direct kidney effects of SGLT2i, including
less proximal tubule glucotoxicity and a
broad downregulation of apical transporters
(including sodium, amino acid, and urate
uptake), provides a metabolic foundation
for kidney and cardiovascular protection.
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Oral Tyrosine Challenge Test (OTyCT)
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Gut Microbiome-Derived PS and DKD
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Plasma PS in Oral Tyrosine Challenge Test
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Plasma Metabolites and Risk of CV Morbidity and Mortality
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Plasma Metabolites and Risk of Mortality in HD Patients

Crude Model 1 Model 2

HR (95% CI) Pvalue HR (95% CI) P value HR (95% CI) Pvalue
Tyrosine* 1.55 (0.86-2.79) 0.147 1.20 (0.61-2.37) 0.602 1.05 (0.47-2.32) 0.912
Tyrosine (Q4 vs. Q1) 1.58 (0.92-2.73) 0.101 1.11 (0.63-1.97) 0.729 1.09 (0.49-2.43) 0.830
4-OH-Hippuric acid* 1.21 (0.89-1.63) 0.228 1.54 (1.13-2.11) 0.007 1.65 (1.08-2.53) 0.022
4-OH-Hippuric acid (Q4 vs. Q1) 1.42 (0.79-2.52) 0.240 2.14 (1.14-3.99) 0.017 2.57 (1.07-6.16) 0.035
p-Cresol glucuronide* 1.09 (0.93-1.28) 0.299 1.12 (0.95-1.31) 0.191 1.30 (1.03-1.65) 0.028
p-Cresol glucuronide (Q4 vs. Q1) 1.37 (0.77-2.43) 0.282 1.46 (0.82-2.60) 0.203 2.47 (0.99-6.14) 0.052
p-Cresol sulfate* 1.02 (0.82—1.26) 0.864 1.01 (0.82—1.24) 0.932 1.18 (0.87—-1.60) 0.289
p-Cresol sulfate (Q4 vs. Q1) 1.40 (0.76-2.58) 0.281 1.39 (0.75-2.58) 0.301 2.95 (1.17-7.42) 0.021
4-OH Phenyllactic acid* 1.65 (1.09-2.49) 0.018 1.70 (1.12-2.60) 0.013 1.27 (0.72-2.25) 0.412
4-OH Phenyllactic acid (Q4 vs. Q1) 1.97 (1.05-3.70) 0.036 1.93 (1.01-3.69) 0.046 1.67 (0.69—4.02) 0.254
4-OH-Benzoic acid* 1.18 (0.92—-1.52) 0.185 1.18 (0.92—-1.51) 0.190 1.65 (1.03-2.66) 0.037
4-OH-Benzoic acid (Q4 vs. Q1) 1.75 (0.96-3.18) 0.069 1.75 (0.95-3.22) 0.073 2.30 (1.01-5.25) 0.048
4-Ethylphenyl sulfate* 1.11 (0.93-1.32) 0.237 1.01 (0.85—-1.21) 0.913 1.12 (0.89—-1.40) 0.338
4-Ethylphenyl sulfate (Q4 vs. Q1) 1.40 (0.76—2.56) 0.280 0.96 (0.50—1.85) 0.909 1.23 (0.56—2.70) 0.612
3-OH-Hippuric acid* 0.82 (0.68-0.98) 0.030 0.90 (0.74-1.10) 0.323 0.93 (0.73—1.18) 0.528
3-OH-Hippuric acid (Q4 vs. Q1) 0.76 (0.44—1.31) 0.326 1.08 (0.61-1.94) 0.785 1.11 (0.55-2.26) 0.776
2-OH-Hippuric acid* 1.07 (0.97-1.19) 0.182 1.09 (0.98—-1.20) 0.116 1.08 (0.95-1.23) 0.256
2-OH-Hippuric acid (Q4 vs. Q1) 1.30 (0.77-2.19) 0.333 1.46 (0.85-2.50) 0.171 1.64 (0.78-3.46) 0.192
2-OH-Benzoic acid* 1.10 (0.97—1.24) 0.146 1.07 (0.94-1.21) 0.328 1.16 (0.97—-1.38) 0.101
2-OH-Benzoic acid (Q4 vs. Q1) 1.99 (1.02-3.88) 0.043 1.87 (0.94-3.72) 0.077 2.30 (0.81-6.50) 0.116
Phenyl sulfate* 0.82 (0.63—1.05) 0.116 0.84 (0.66—1.08) 0.175 0.85 (0.63—-1.14) 0.272
Phenyl sulfate (Q4 vs. Q1) 0.60 (0.33-1.08) 0.086 0.64 (0.35-1.17) 0.145 0.45 (0.19-1.05) 0.065
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Plasma Metabolites and Risk of Mortality in HD Patients

Crude Model 1 Model 2

HR (95% CI) P value HR (95% CI) Pvalue HR (95% CI) P value
Tryptophan* 0.36 (0.18-0.72) 0.004 0.41 (0.21-0.80) 0.009 0.28 (0.09-0.89) 0.030.
Tryptophan (Q4 vs. Q1) 0.51 (0.29—0.90) 0.020 0.53 (0.30—0.94) 0.031 0.61 (0.27-1.37) 0.234
Indole glucuronide* 1.08 (0.84—1.38) 0.570 1.25 (0.98—1.60) 0.078 1.48 (1.01-2.16) 0.042
Indole glucuronide (Q4 vs. Q1) 1.22 (0.67-2.24) 0.513 1.43 (0.76-2.70) 0.269 2.20 (0.88-5.46) 0.089
5-OH-indole-3-acetic acid¥* 1.27 (0.77-2.08) 0.344 1.66 (0.99-2.77) 0.051 2.33 (1.13-4.80) 0.021
5-OH-indole-3-acetic acid (Q4 vs.Q1) | 1.10 (0.62-1.96) 0.749 1.57 (0.84—2.93) 0.160 2.73 (1.01-7.40) 0.048
Indoxyl sulfate* 0.91 (0.69-1.21) 0.511 1.03 (0.74-1.43) 0.855 1.85 (0.96-3.55) 0.065
Indoxyl sulfate (Q4 vs. Q1) 1.04 (0.61-1.79) 0.877 1.33 (0.75-2.35) 0.331 1.83 (0.69—4.86) 0.223
Indole-3-lactic acid* 0.47 (0.31-0.72) <0.001 0.60 (0.39-0.91) 0.017 0.46 (0.25-0.84) 0.012
Indole-3-lactic acid (Q4 vs. Q1) 0.38 (0.20-0.71) 0.003 0.47 (0.25-0.89) 0.020 0.45 (0.20-0.98) 0.044
N-Acetyl-Tryptophan* 0.84 (0.57—-1.25) 0.387 1.02 (0.69-1.52) 0.909 0.82 (0.47-1.42) 0.470
N-Acetyl-Tryptophan (Q4 vs. Q1) 0.74 (0.43-1.28) 0.282 0.97 (0.54-1.72) 0.906 1.48 (0.62-3.54) 0.373
Serotonin* 1.06 (0.85-1.32) 0.604 1.04 (0.83-1.31) 0.728 1.11 (0.86-1.44) 0.423
Serotonin (Q4 vs. Q1) 1.24 (0.57-2.68) 0.586 1.42 (0.64-3.13) 0.389 1.25 (0.43-3.65) 0.679
Indole-3-acetic acid* 0.67 (0.46-0.96) 0.029 0.70 (0.49-0.99) 0.045 0.89 (0.57-1.38) 0.595
Indole-3-acetic acid (Q4 vs. Q1) 0.58 (0.32—1.06) 0.075 0.59 (0.32—1.08) 0.088 0.93 (0.42-2.05) 0.860
Indole-3-propionic acid* 0.89 (0.73—-1.08) 0.224 0.93 (0.76—1.14) 0.497 0.88 (0.70—-1.11) 0.268
Indole-3-propionic acid (Q4 vs. Q1) 0.65 (0.36—1.18) 0.158 0.73 (0.40-1.34) 0.311 0.71 (0.33—1.55) 0.387
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Take Home Message

« Micronutrient deficiencies are common and clinically important,
yet they’re often overlooked.

« The BMI paradox in CKD actually reflects the confounding of
underlying nutritional status, highlighting the need for more
precise assessments of body composition to guide clinical care.

« CKD-related wasting, particularly in patients with normal BMI, is
often inflammation-driven. Simply adding calories or protein does
not correct this type 2 malnutrition.

« Effective care requires addressing the underlying inflammatory
drivers, such as GDF-15 and gut dysbiosis.



Take Home Message

 |Instead of focusing solely on grams of protein, we must consider
the source. Plant-based diets reduce TMAO and lower the risk of
CKM syndrome, while supporting nutritional adequacy with no
increased risk of hyperkalemia.

 Patients differ in their gut microbiome, metabolic responses, and
toxin production. Universal recommendations of a low-protein diet
for CKD patients have limited utility.

* Oral amino acid challenge test is a step toward identifying at-risk
patients. Modulating the gut microbiota through diet or probiotics
could reduce toxin burden, moving us beyond simple restriction.



HUNDREDS OF YEARS OF MEDICAL PROGRESS, AND
ALL YOU CAN TELL ME TO DO IS EAT LESS?

Low protein diet
ACEIi/ARB
SGLT2i
ns-MRA
GLP-1 RA
Kremezin
Probiotics



Precision Nutrition in CKD

Is It Time? od




“The h'tstory of medicine is that what was
inconceivable yes‘cerday, and bavely achievable

today, oﬁen becomes routine tomorrow.”
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