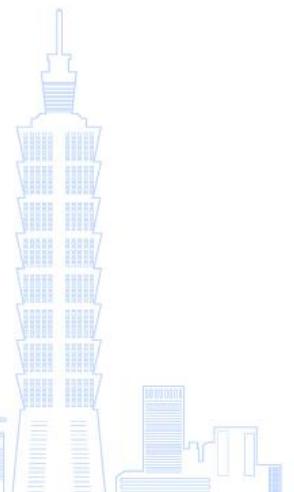


APCN x TSN 2025

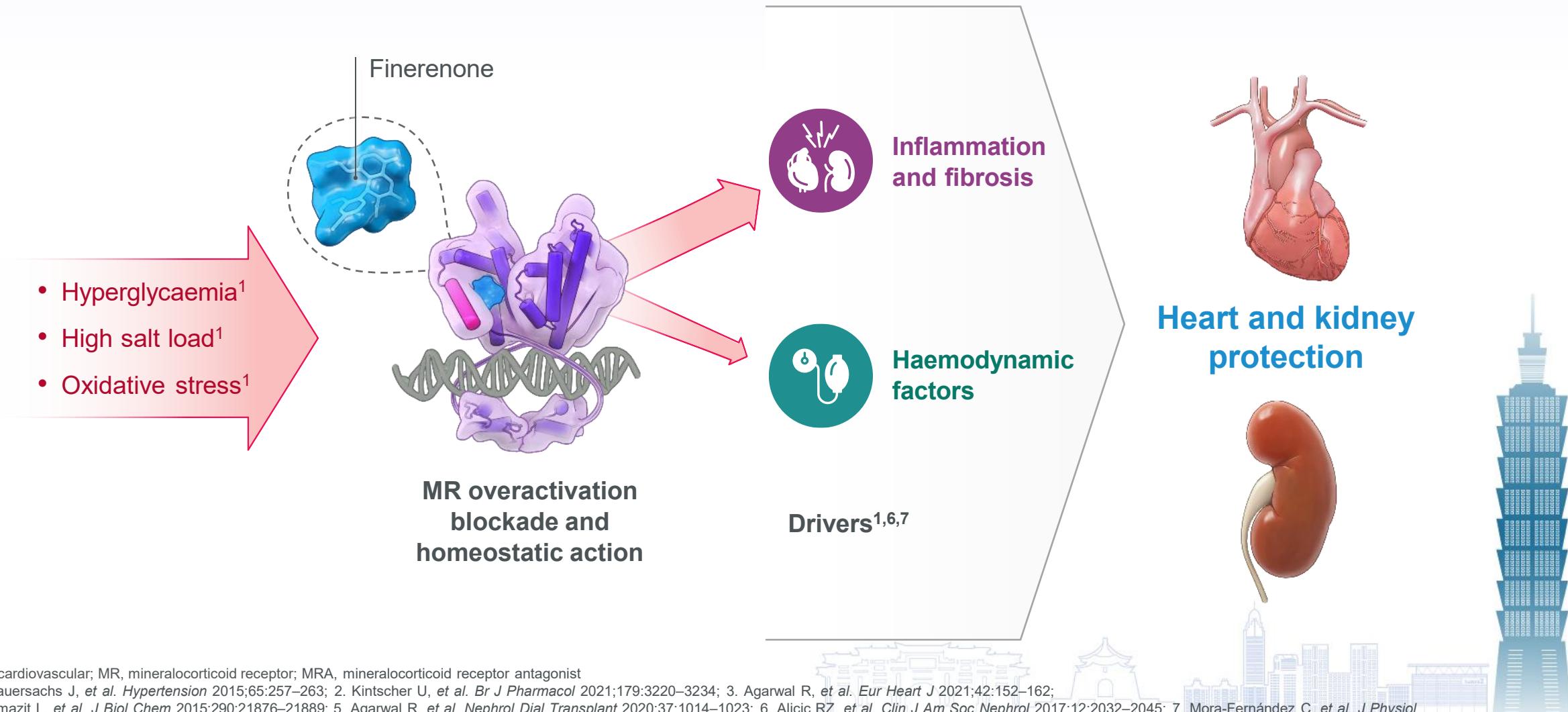
23rd Asian Pacific Congress of Nephrology

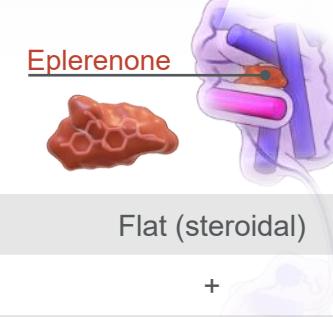

Mineralocorticoid Receptor Antagonism for Treatment of CKD

Sydney Tang
The University of Hong Kong

**HKU
Med**

School of Clinical Medicine
Department of Medicine
香港大學內科學系


*December 7, 2025
Taipei, Taiwan*


Disclosures

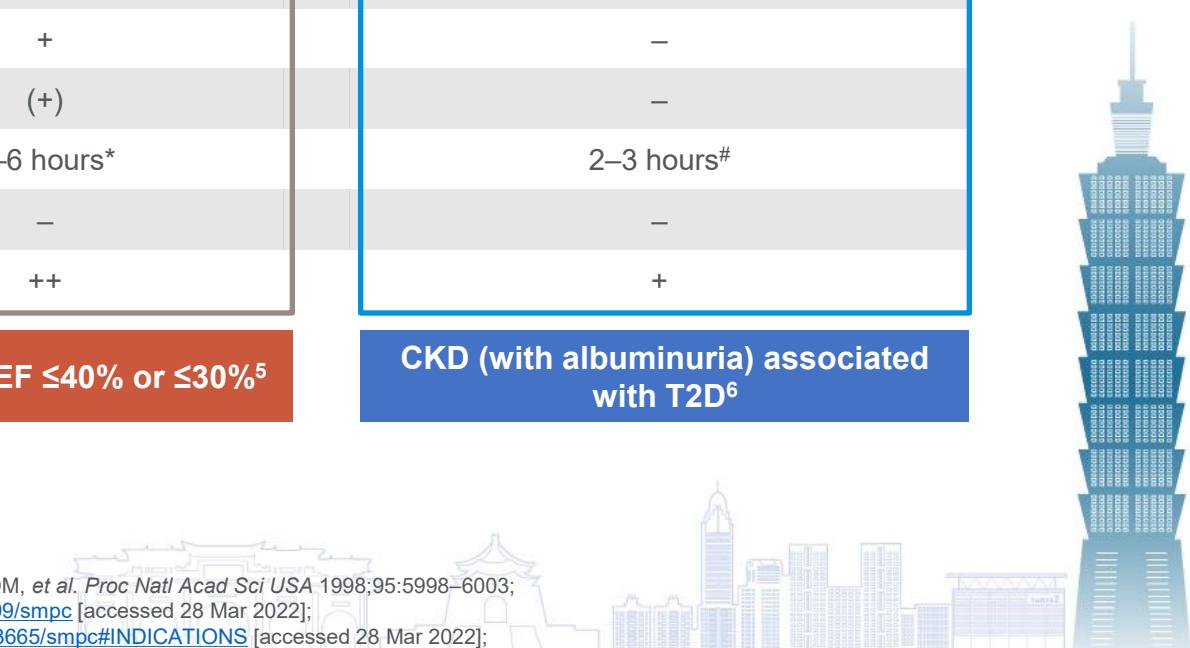
- Advisory fees received from:
 - Travers Therapeutics
 - Boehringer Ingelheim
 - Novartis
- Speaker's honoraria received from:
 - AstraZeneca
 - Bayer
 - Boehringer Ingelheim
 - Everest Medicines
 - GSK
 - Novartis Pharma AG
 - Vera therapeutics
 - Vantive
- Local Lead of PROTECT and DUPLEX (Travers); ALIGN study (Chinook Therapeutics -> Novartis), BI690517 (Boehringer Ingelheim); DIMERIX (Dimerix Bioscience); iCAN Study (AZ); ARTEMIS (Alexion); PREVAIL (Biogen) multi-centre studies
- KDIGO Executive Committee 2020-2023
 - Core member of IgAN and IgAV Clinical Practice Guideline Work Group 2025

Finerenone, a nonsteroidal, highly selective MRA, blocks MR overactivation, which slows kidney and CV disease progression in patients with type 2 diabetes¹⁻⁷

Aldosterone antagonists		
Structural properties	Flat (steroidal)	Flat (steroidal)
Potency against MR	+++	+
Selectivity for MR	+	++
CNS penetration	+	+
Sexual side effects	++	(+)
Half-life	>20 hours*	4–6 hours*
Active metabolites	++	–
Effect on BP	+++	++
Indication	Congestive HF⁴	HF and LVEF ≤40% or ≤30%⁵
Finerenone		
Structural properties	Bulky (nonsteroidal)	
Potency against MR	+++	
Selectivity for MR	+++	
CNS penetration	–	
Sexual side effects	–	
Half-life	2–3 hours [#]	
Active metabolites	–	
Effect on BP	+	
Indication	CKD (with albuminuria) associated with T2D⁶	

*In patients with HF

[#]In healthy volunteers

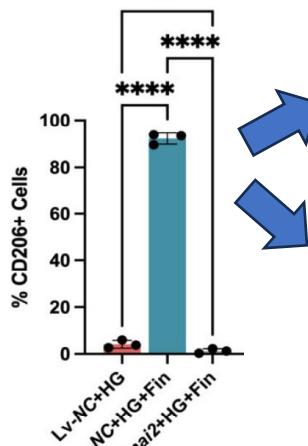
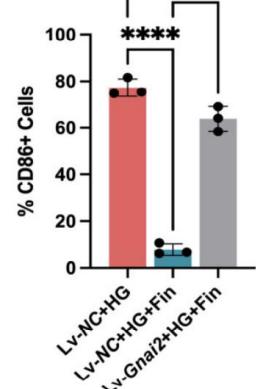
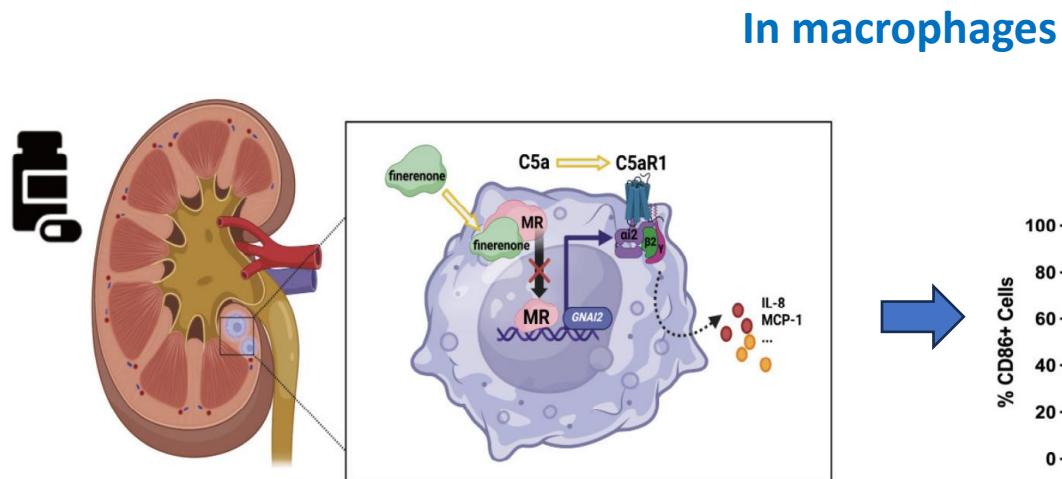

CNS, central nervous system; LVEF, left ventricular ejection fraction

1. Kintscher U, et al. *Br J Pharmacol* 2021; doi: 10.1111/bph.15747; 2. Schwabe JW, et al. *Cell* 1993;75:567–578; 3. Tanenbaum DM, et al. *Proc Natl Acad Sci USA* 1998;95:5998–6003;

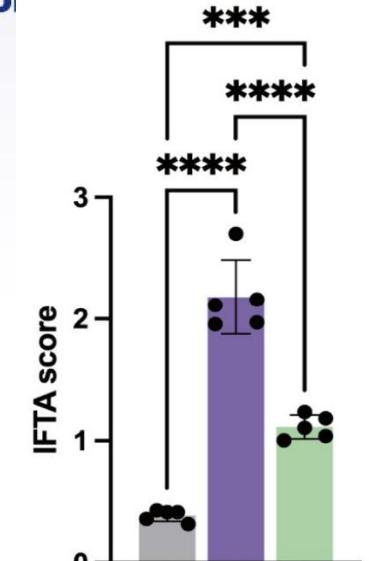
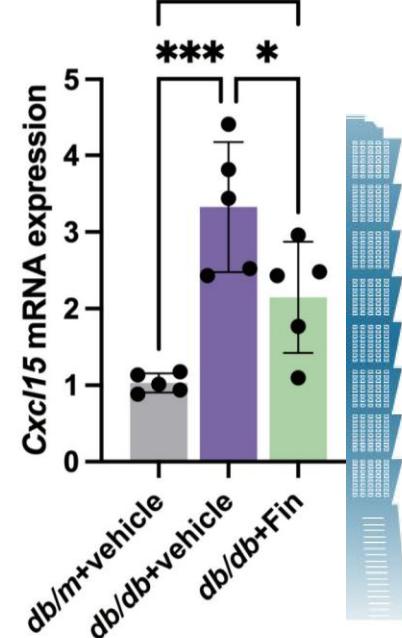
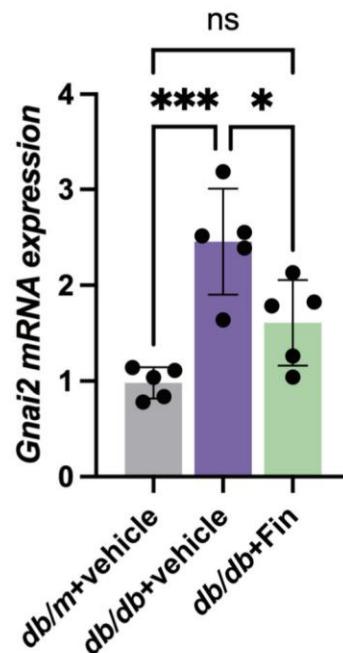
4. Pfizer Ltd. Aldactone (spironolactone) Summary of Product Characteristics. 2019. <https://www.medicines.org.uk/emc/product/2899/smepc> [accessed 28 Mar 2022];

5. Zentiva Pharma UK Limited. Eplerenone Summary of Product Characteristics. 2021. <https://www.medicines.org.uk/emc/product/3665/smepc#INDICATIONS> [accessed 28 Mar 2022];

6. Bayer AG. KERENDIA® (finerenone) Hong Kong Prescribing Information.

Finerenone Alleviates Over-Activation of Complement C5a-C5aR1 Axis of Macrophages by Regulating G Protein Subunit Alpha i2 to Improve Diabetic Nephropathy




Zi-Han Li ^{1,2,3,4}, Zi-Jun Sun ^{1,2,3,4,5,6}, Sydney C. W. Tang ⁷, Ming-Hui Zhao ^{1,2,3,4,5,6}, Min Chen ^{1,2,3,4,5,6,*}
and Dong-Yuan Chang ^{1,2,3,4,5,6,*}

APCN x TSN 2025
23rd Asian Pacific Congress of Nephrology
23rd Asian Pacific Congress of Transplantation

Cells 2025

In db/db mice

Finerenone alleviated HG-induced injuries and M1 polarization of macrophages via inhibiting Gna12

FIDELIO-DKD and FIGARO-DKD assessed prespecified kidney & CV outcomes in patients across the spectrum of CKD severity

N=5,734

N=7,437

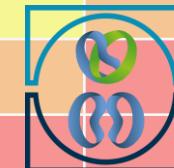
N=.13,000

FIDELITY (FIDELIO-DKD + FIGARO-DKD pooled)

Albuminuria categories
(mg albumin/g creatinine)

	A1 Normal to mildly increased	A2 Moderately increased	A3 Severely increased
	0-<30	30-300	>300-<5000
G1 ≥90			
G2 60-89			
G3a 45-59			
G3b 30-44			
G4 15-29			
G5 <15			

GFR categories
(ml/min/1.73 m²)

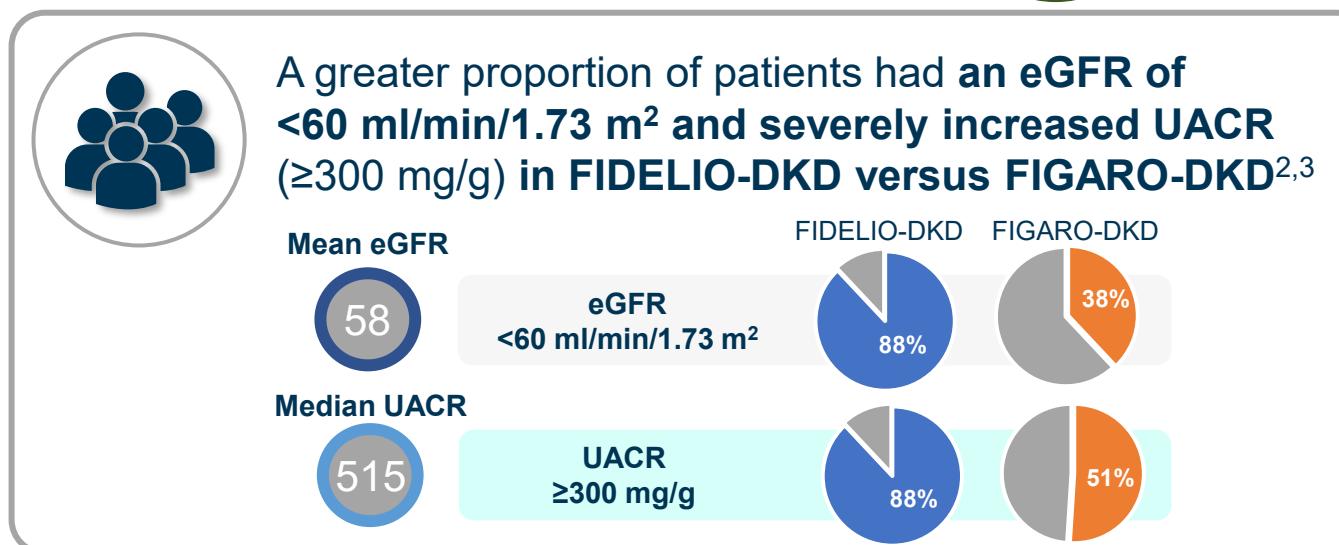

Albuminuria categories
(mg albumin/g creatinine)

	A1 Normal to mildly increased	A2 Moderately increased	A3 Severely increased
	0-<30	30-300	>300-<5000
G1 ≥90			
G2 60-89			
G3a 45-59			
G3b 30-44			
G4 15-29			
G5 <15			

GFR categories
(ml/min/1.73 m²)

Albuminuria categories
(mg albumin/g creatinine)

	A1 Normal to mildly increased	A2 Moderately increased	A3 Severely increased
	0-<30	30-300	>300-<5000
G1 ≥90			
G2 60-89			
G3a 45-59			
G3b 30-44			
G4 15-29			
G5 <15			


At baseline, patients in FIDELITY had well-controlled blood pressure and HbA1c, and CV medications were used by most patients¹

Key eligibility criteria¹⁻³

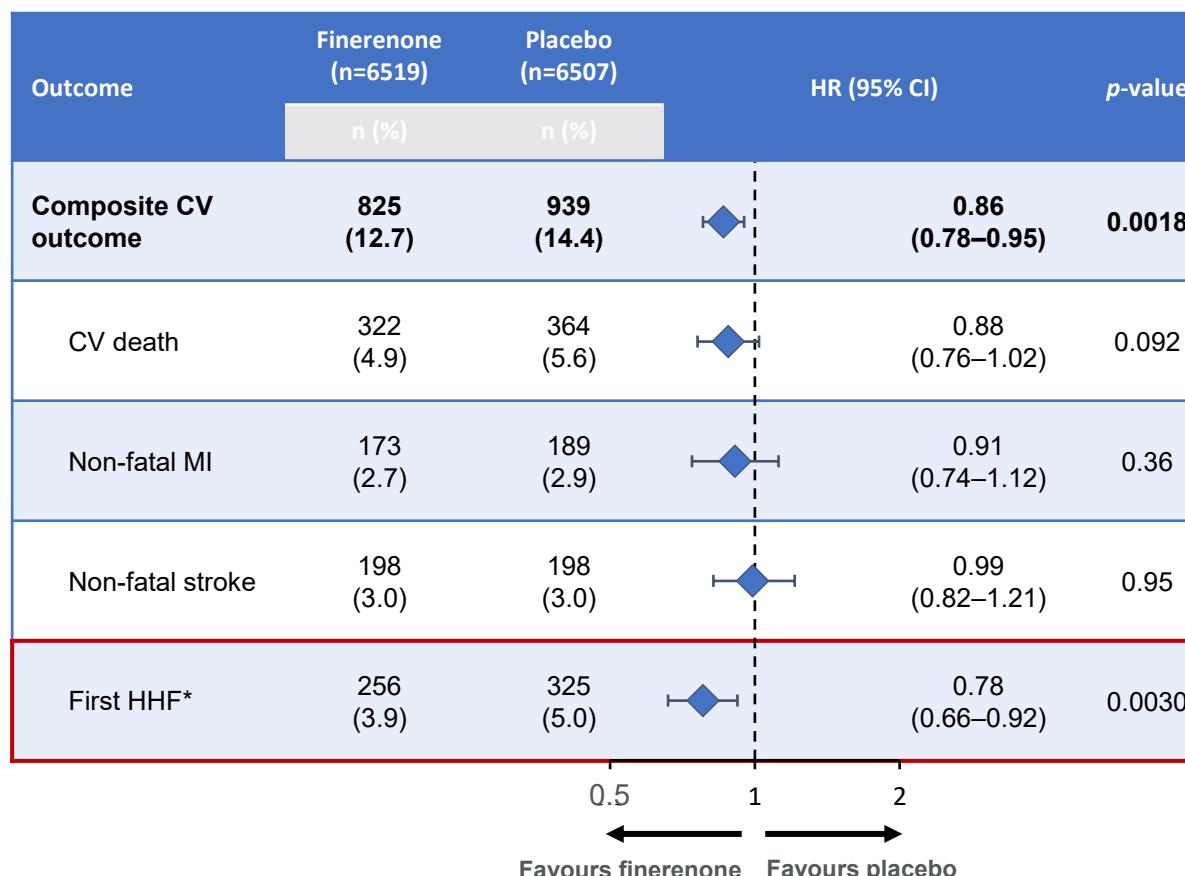
- T2D**
- CKD**
- On single RASI
- Serum $[K^+]$ ≤ 4.8 mmol/l
- Symptomatic HFrEF**

99% of patients were treated with a maximum tolerated dose of an ACEi or ARB¹⁻³

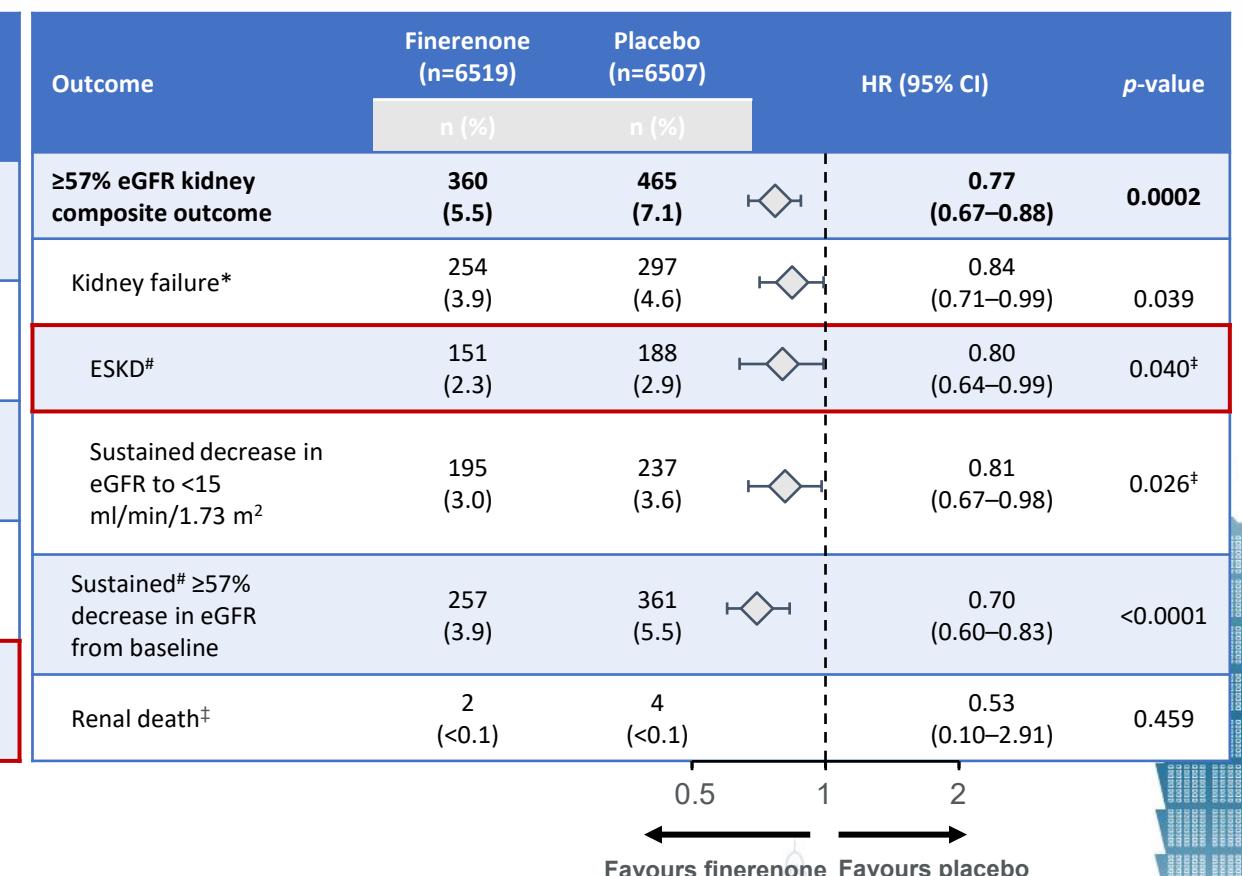
Blood pressure and HbA1c were well controlled at baseline¹⁻³

Adherence to treatment was high (~92% in the finerenone and placebo groups)^{2,3}

Numbers of permanent discontinuations were similar between treatment groups^{2,3}


Median follow-up was 3.0 years¹

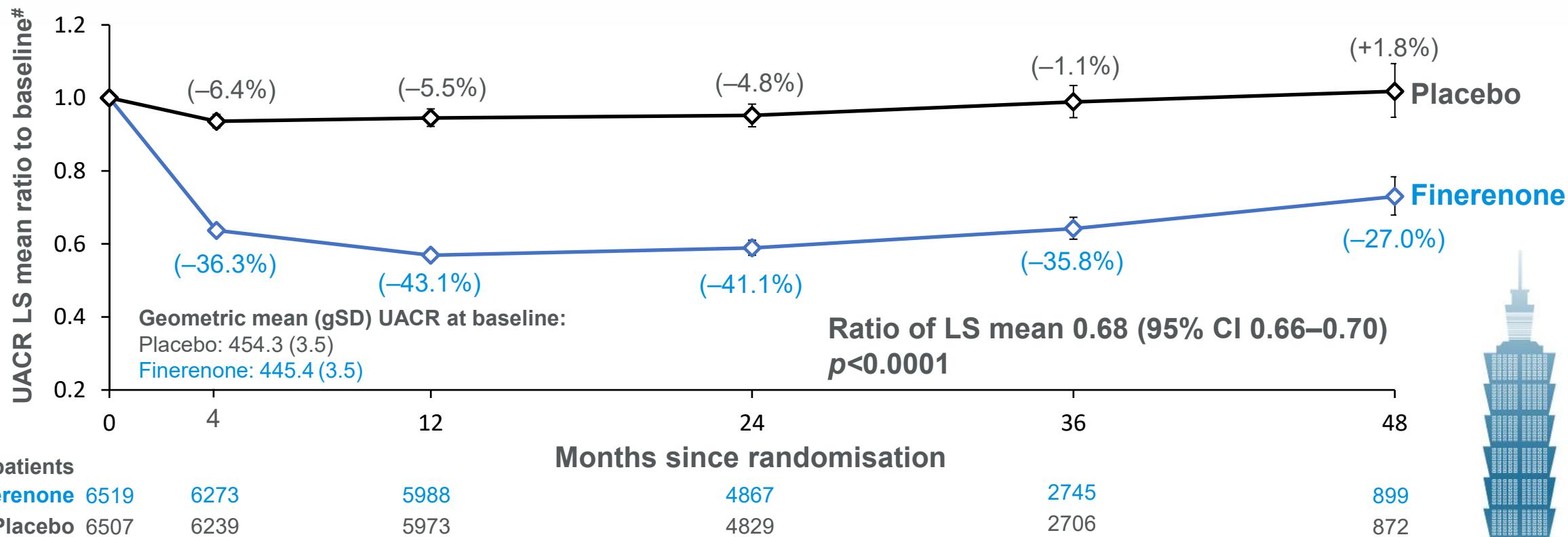
ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; CKD, chronic kidney disease; CV, cardiovascular; eGFR, estimated glomerular filtration rate; HbA1c, glycated haemoglobin; HFrEF, heart failure with reduced ejection fraction; $[K^+]$, potassium concentration; RASI, renin-angiotensin system inhibitor; T2D, type 2 diabetes; UACR, urine albumin-to-creatinine ratio


1. Agarwal R, et al. Eur Heart J 2022;43:474-484; 2. Bakris GL, et al. N Engl J Med 2020;383:2219-2229; 3. Pitt B, et al. N Engl J Med 2021;385:2252-2263

Finerenone has demonstrated significant risk reductions in CV and kidney outcomes, in patients with CKD and T2D¹

Composite CV outcome

Composite kidney outcome



*First HHF defined as first event after randomisation; #ESKD or an eGFR <15 ml/min/1.73 m²; events were classified as renal death if: (1) the patient died; (2) kidney replacement therapy had not been initiated despite being clinically indicated; and (3) there was no other likely cause of death; [‡]Analyses for p-values not prespecified

CI, confidence interval; ESKD, end-stage kidney disease; HR, heart rate

1. Agarwal R, et al. Eur Heart J 2022;43:474–484; 2. Bayer AG. KERENDIA® (finerenone) Summary of Product Characteristics. 2023. https://www.ema.europa.eu/documents/product-information/kerendia-epar-product-information_en.pdf [accessed 03 July 2023]

A lower mean UACR with finerenone vs placebo was maintained throughout the study

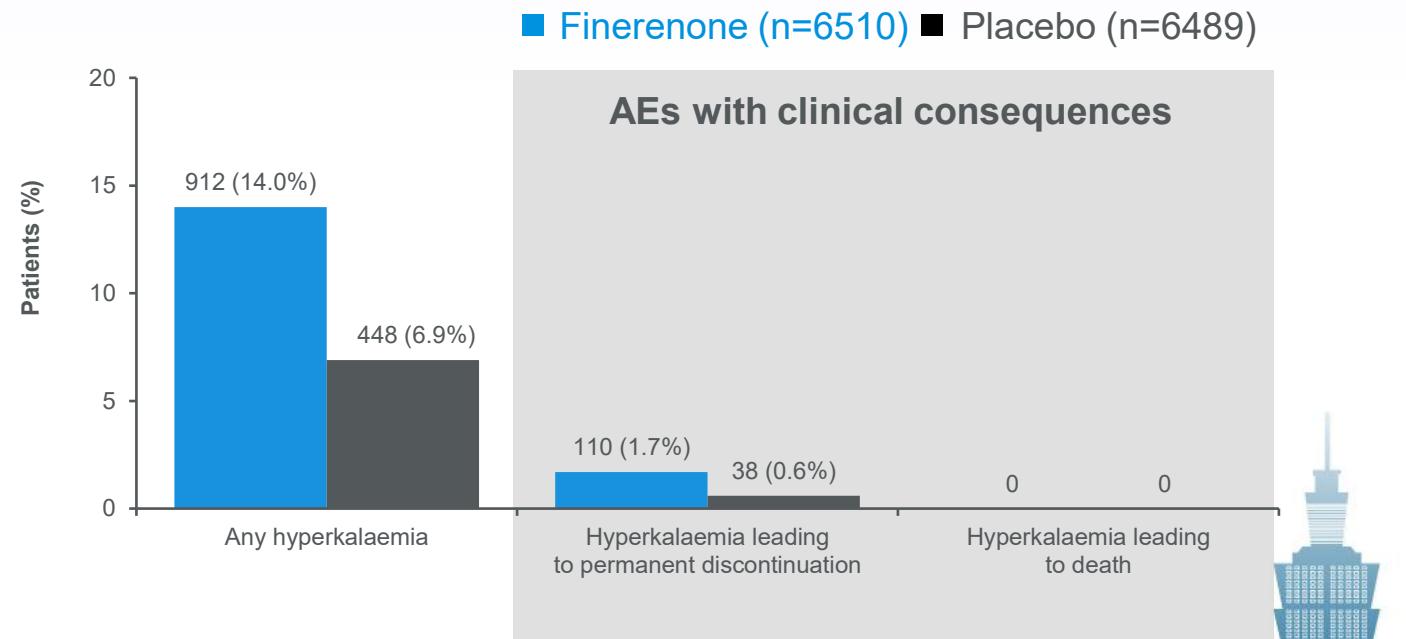
Data in parentheses are mean change from baseline

*Full analysis set. Mixed model with factors treatment group, region, eGFR category at screening, type of albuminuria at screening, CV disease history, time, treatment*time, study, study*treatment, log-transformed baseline value nested within type of albuminuria at screening and log-transformed baseline value*time as covariate. Separate unstructured covariance patterns are estimated for each treatment group; [#]data are LS mean/95% CI

CI, confidence interval; eGFR, estimated glomerular filtration rate; gSD, geometric standard deviation; LS, least-squares; UACR, urine albumin-to-creatinine ratio

Agarwal R, et al. Eur Heart J 2022;43(6):474–484

Finerenone had a similar AE profile to placebo and an increased incidence of hyperkalaemia, but the clinical impact was minimal¹


Incidence of AEs and changes in vital signs were similar between finerenone and placebo¹

Any AE: 86.1% vs 86.4%

AKI: 3.4% vs 3.6%

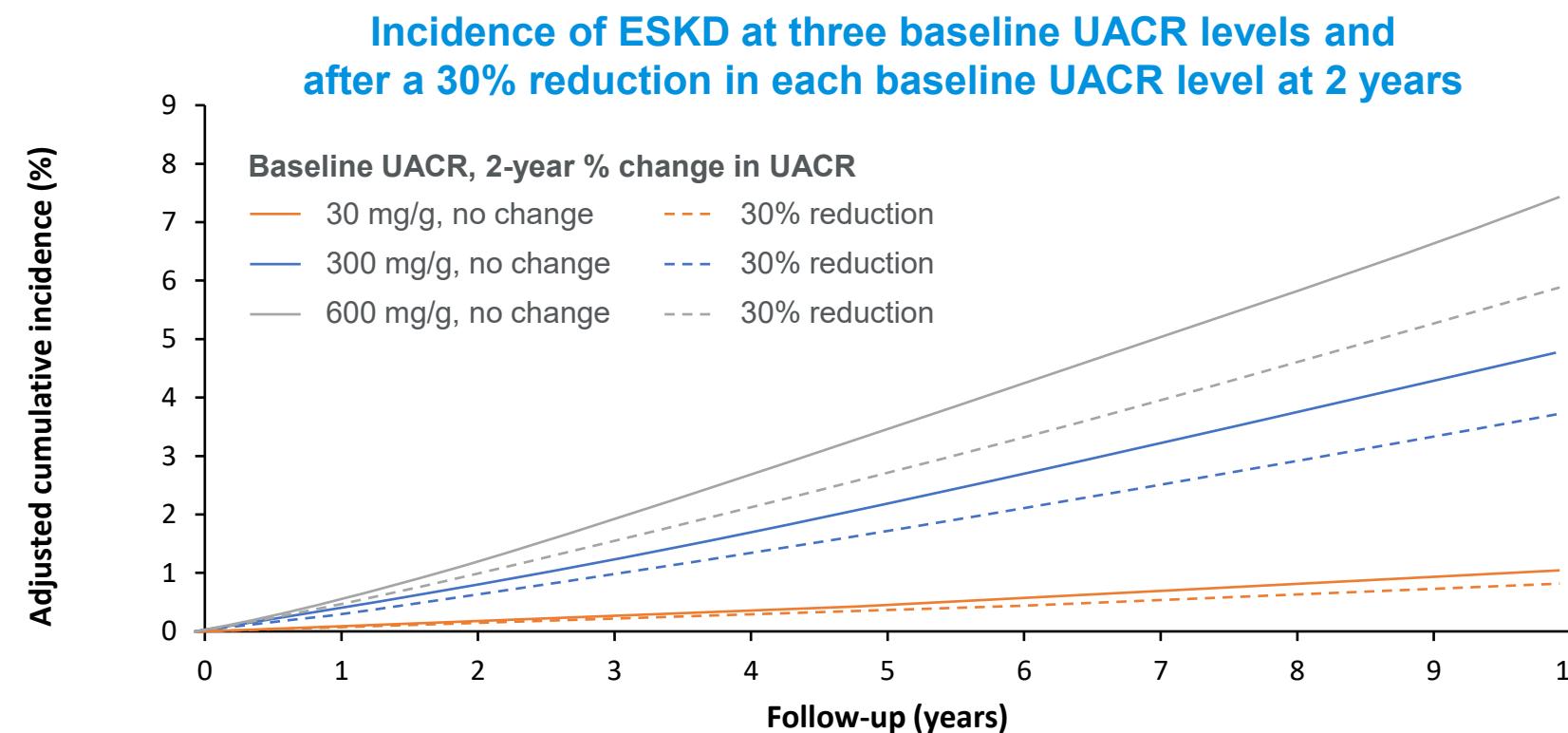
Gynaecomastia: 0.1% vs 0.2%

No change in HbA1c

Maximum difference in mean serum [K⁺] between finerenone and placebo¹

0.19 mmol/l at month 4

Hyperkalaemia risk factors²:
 High baseline [K⁺], lower eGFR, higher UACR, beta blocker use

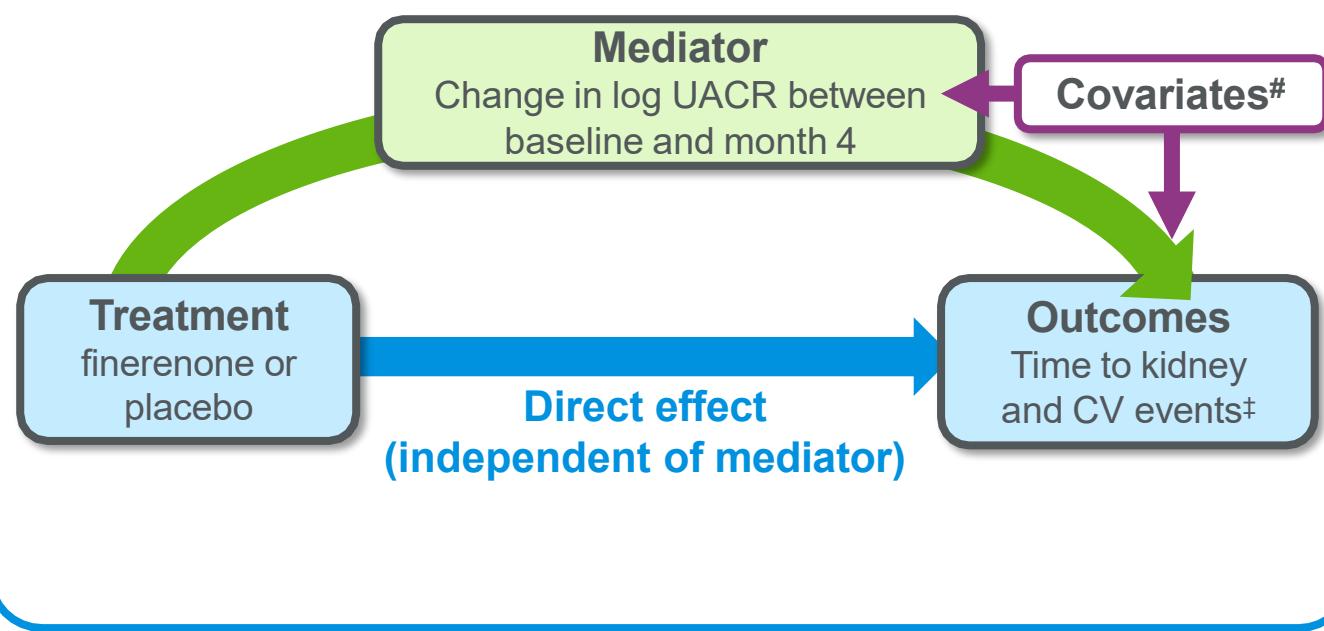

In FIDELITY, the total number of patients with an event in the finerenone group was n=6510, and n=6489 in the placebo group.
 AE, adverse event; AKI, acute kidney injury; eGFR, estimated glomerular filtration rate; HbA1c, glycated haemoglobin; K, potassium; UACR, urine albumin-to-creatinine ratio.

1. Agarwal R, et al. Eur Heart J. 2022;43:474–484; 2. Agarwal R, et al. J Am Soc Nephrol. 2022;33:225–237.

A meta-analysis of cohort data has revealed a lower risk of kidney failure with a 30% reduction in UACR over 2 years

Individual-level meta-analysis of 693,816 participants from 28 observational cohorts*

Over 2 years, a **30% reduction** in UACR reduced the risk of ESKD by 17% regardless of baseline UACR
 (adjusted[#] HR=0.83; 95% CI 0.74-0.94)



*This meta-analysis included 18 cohorts with follow-up for ESKD and 16 cohorts that quantified albuminuria with UACR; [#]Adjusted for age, sex, race/ethnicity (Black vs non-Black), systolic blood pressure, total cholesterol, diabetes, history of CV disease, current smoking, former smoking, first eGFR and albuminuria. CI, confidence interval; CV, cardiovascular; eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; HR, hazard ratio; UACR, urine albumin-to-creatinine ratio.

Coresh J, et al. *Lancet Diabetes Endocrinol.* 2019;7:115-127.

Mediation model framework

Indirect effect (mediated by reduction in log UACR)

The extent to which UACR reduction mediated the clinical benefits observed with finerenone on the kidney and CV outcomes[‡] was determined by comparing the relative magnitudes of the **direct** and **indirect** effects

UACR reduction at month 4 mediated:

84% of the effect of finerenone on the **kidney composite outcome**

37% of its treatment effect on the **CV composite outcome**

Initiation and monitoring¹

Initiate treatment when serum $[K^+]$ is **≤ 5** mmol/l*

Withhold treatment if serum $[K^+]$ is **> 5.5** mmol/l

Initiate treatment when eGFR is **≥ 25** ml/min/1.73 m²

Key treatment effects²


Finerenone reduced the risk of ESKD[#] by **1/5**

HR 0.80
(95% CI 0.64–0.99)

Finerenone reduced the risk of HHF by **>1/5**

HR 0.78
(95% CI 0.66–0.92)

*Finerenone can be started if serum $[K^+]$ is ≤ 4.8 mmol/l and initiation may be considered if serum $[K^+]$ is ≤ 5 mmol/l with additional serum potassium monitoring within the first 4 weeks based on patient characteristics and serum potassium levels; [#]ESKD defined as initiation of chronic dialysis for ≥ 90 days or kidney transplant. HHF, hospitalisation for heart failure; HR, hazard ratio

1. Kerendia (finerenone) Hong Kong Prescribing Information. 2. Agarwal R, et al. Eur Heart J 2022;43:474–484

Case Mr M

- M/78
- Known T2DM for >10 years, well controlled with A1C 6.5%, BMI 25
- Serum creatinine 130 µmol/L (eGFR 54)
- UACR ~ 600 mg/g, SBP 110-120 mmHg
- Medications: sitagliptin, olmesartan, amlodipine, simvastatin
Chol: 3.8 mmol/L
- Came to see me because of increased UACR

	Dec 2021	Dec 2022
UACR (mg/g)	603	1,519
eGFR (ml/min/1.73m ²)	54	54

eGFR categories (ml/min/1.73 m ²) Description and range	Albuminuria categories		
	Rang e	A1 <30 mg/g <3 mg/mmol	A2 30-299 mg/g 3-29 mg/mmol
≥90 G1	Monitor (1)	Treat (1)	Treat & consult (3)
60-89 G2	Monitor (1)	Treat (1)	Treat & consult (3)
45-59 G3a	Treat (1)	Treat (2)	Treat & consult (3)
30-44 G3b	Treat (2)	Treat & consult (3)	Treat & consult (3)
15-29 G4	Treat & consult (3)	Treat & consult (3)	Treat & consult (4+)
<15 G5	Treat & consult (4+)	Treat & consult (4+)	Treat & consult (4+)

The American Heart Association PREVENT™ Online

Welcome to the American Heart Association **Predicting Risk of cardiovascular disease EVENTS** (PREVENT) primary prevention patients (those without atherosclerotic cardiovascular disease or heart failure) only.

Sex

Male Female

Age

78

years

[i](#)

Total Cholesterol

150

mg/dL

[i](#)

HDL Cholesterol

40

mg/dL

[i](#)

SBP

120

mmHg

[i](#)

BMI

25

[i](#)

eGFR

54

[i](#)

Diabetes

No Yes

[i](#)

Current Smoking

No Yes

[i](#)

Anti-hypertensive medication

No Yes

[i](#)

Lipid-lowering medication

No Yes

[i](#)

The following three predictors are optional for further personalization of risk assessment. When they are clinically indicated or available, please click on yes and enter the value

UACR

1500

mg/g

No Yes

[i](#)

HbA1C

6.5

%

No Yes

[i](#)

Zip Code (for estimating social deprivation index [SDI])

No Yes

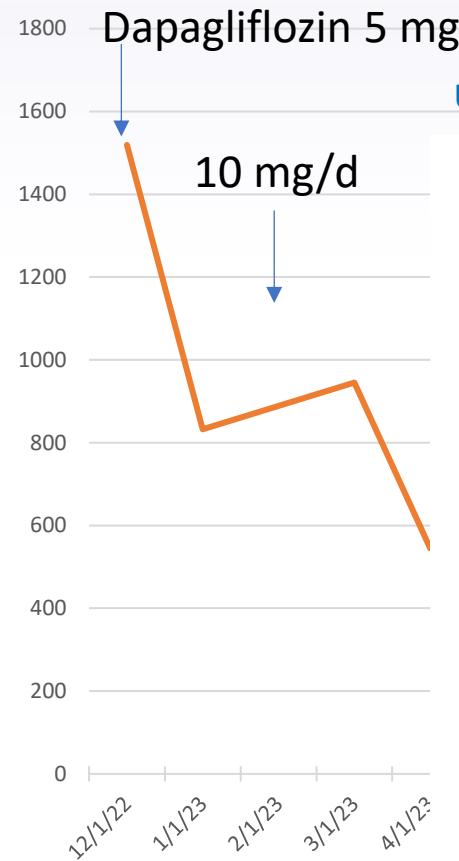
[i](#)

[Calculate](#)

[Reset](#)

Risk of CVD Risk of ASCVD Risk of Heart Failure

10-y CVD
Risk 48%


This individual has an estimated 10-year risk of CVD = 47.8%

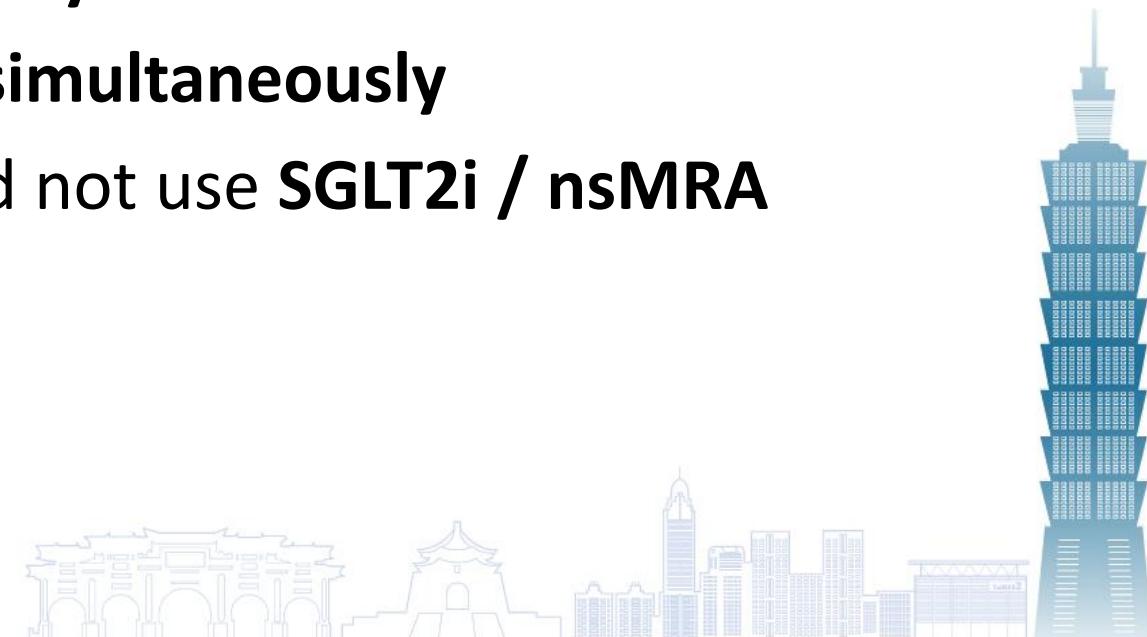
What would you do?

Current Medications: sitagliptin, olmesartan, amlodipine, simvastatin/ezetimibe, aspirin

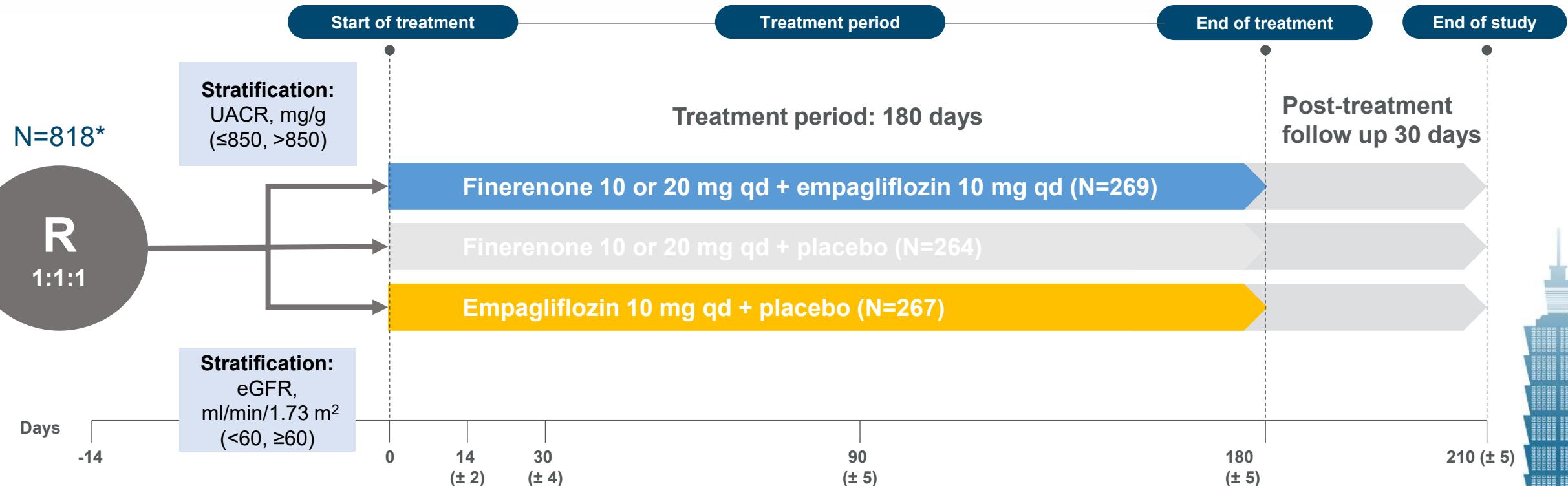
10 mg/d

→ 20 mg/d

At last FU
22/7/2025
UACR 609 mg/g



Now 82 yo
Living better


Is this what you would also do if you have a similar patient?

- A. Yes, **starting with an SGLT2i** and if UACR does not improve to the desired level, **add a nsMRA sequentially**
- B. Yes, but starting with a **nsMRA** and if UACR does not improve to the desired level, **add an SGLT2i sequentially**
- C. No, I would start an **SGLT2i + nsMRA simultaneously**
- D. No, I would **increase his ARB dose** and not use **SGLT2i / nsMRA**

Participants enrolled from 185 sites across multiple countries/regions: Belgium, Canada, Denmark, France, Germany, India, Israel, Italy, Japan, Republic of Korea, the Netherlands, Spain, Taiwan, and the USA

*Four participants underwent randomization twice in error and 14 participants from one site were excluded owing to historic violations of Good Clinical Practice guidelines not related to this study, and their data were not included. Therefore, 800 participants were included in the full analysis set for the efficacy analyses.³

eGFR, estimated glomerular filtration rate; qd, once daily; R, randomization; UACR, urine albumin-creatinine ratio.

19 1. Green JB, et al. *Nephrol Dial Transplant*. 2023;38:894-90. This figure is reproduced from Green JB, et al. under the terms of the Creative Commons Attribution-Non-Commercial License (<https://creativecommons.org/licenses/by-nc/4.0/>); 2. NCT05254002. Available at: <https://clinicaltrials.gov/study/NCT05254002>; 3. Agarwal R, et al. *N Engl J Med*. 2025; doi:10.1056/NEJMoa2410659.

Key inclusion criteria

- Aged ≥ 18 years
- eGFR 30–90 mL/min/1.73m²*
- UACR ≥ 100 – < 5000 mg/g
- T2D with HbA1c $< 11\%$
- Clinically maximum tolerated dose of ACEi/ARB for > 1 month

Key exclusion criteria

- T1D
- Day 1 BP $> 160/100$ or SBP < 90 mmHg
- Serum K⁺ > 4.8 mmol/L
- HFrEF with NYHA Class II–IV
- Current treatment with finerenone and an SGLT-2i

Primary endpoint

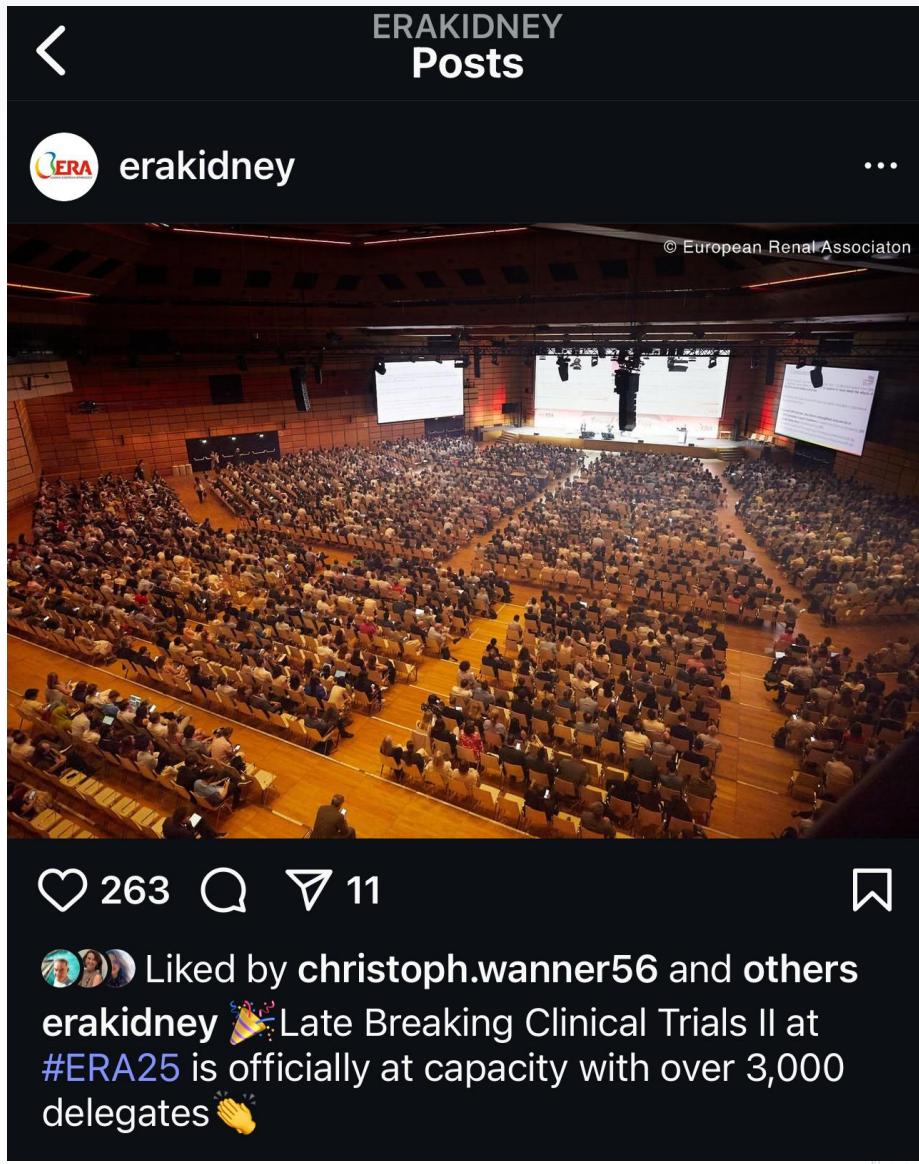
Relative change in UACR from baseline to Day 180:

- Combination versus empagliflozin
- Combination versus finerenone

Secondary endpoints

Secondary efficacy outcomes

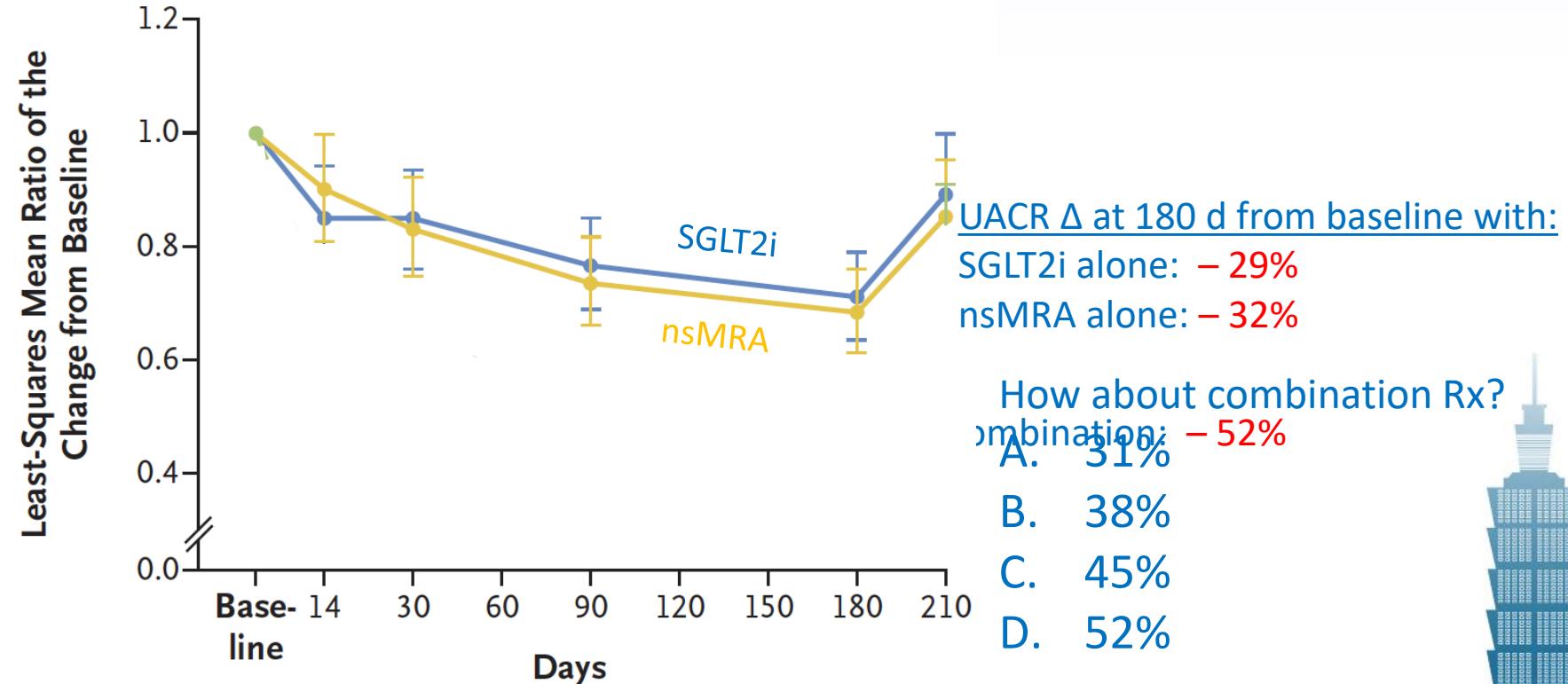
Relative change in UACR:


- Between end of treatment visit to 30 days after end of treatment visit
- Between 30 days after end of treatment visit and baseline
- Category ($> 30\%$, $> 40\%$, and $> 50\%$) at 180 days

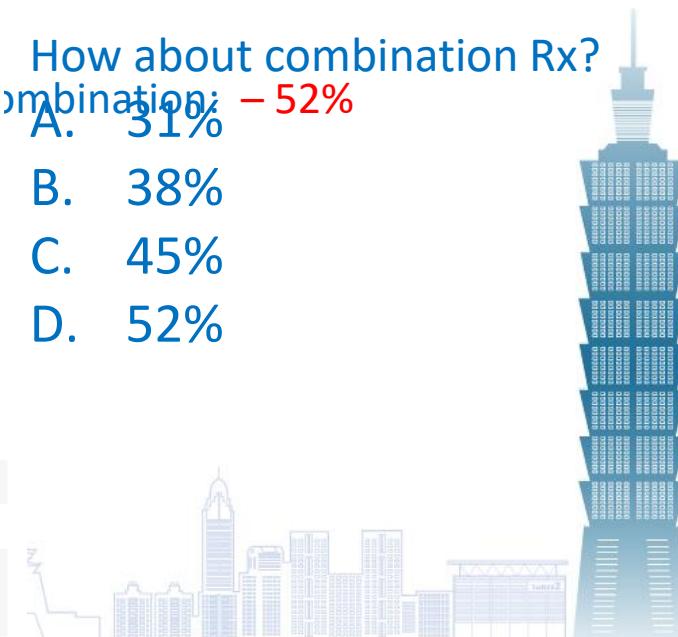
Secondary safety outcomes

- Initial and longer-term changes in eGFR
- Acute kidney injury
- Treatment-related AEs: hyperkalemia, symptomatic hypotension, genital mycotic events

*Patients will require at least one value of eGFR < 60 mL/min/1.73 m² within the previous 3 months or have registered diagnosis of CKD. Patients with an eGFR > 75 –90 mL/min/1.73 m² will be capped at 20%. Patients in Part A required to have eGFR 40–90 mL/min/1.73 m², expanded to 30–90 mL/min/1.73 m² in Part B following feedback from DMC and safety analysis.

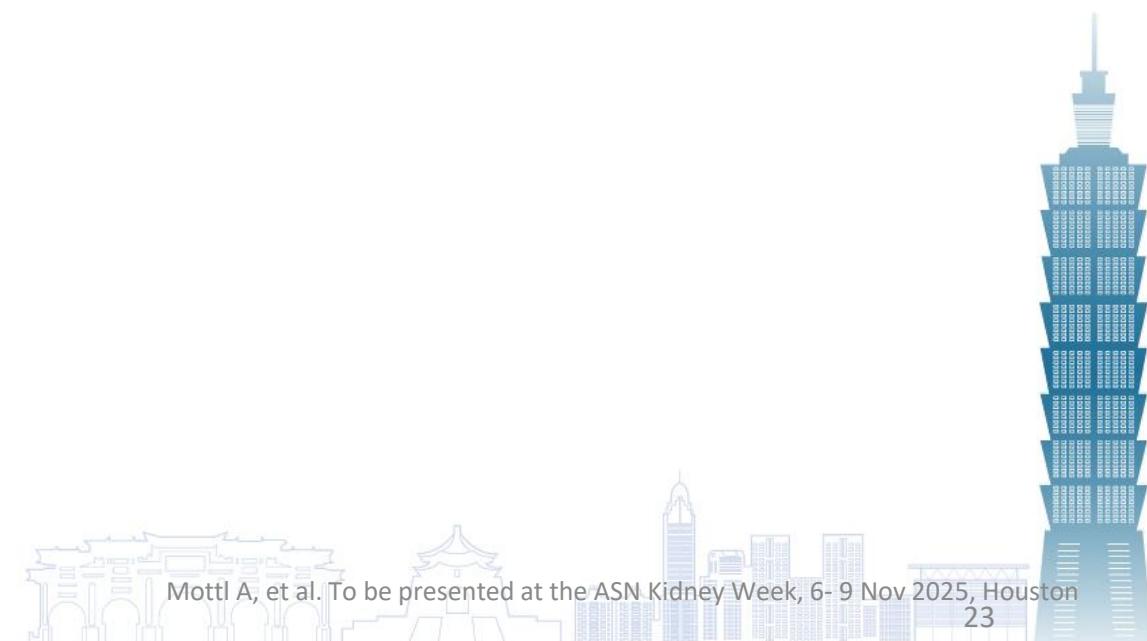

St. Stephen's Cathedral, built 1137,
Was where Wolfgang A. Mozart married
Constanze Weber in 1781

CONFIDENCE


Baseline	My patient
Age 67-78 y	
Male 75%	M
Asian 46%	Chinese
eGFR 54	54 ml/min
UACR 580	1500 g/g
BMI 29	25
A1C 7.3%	6.5
On RASi>98%	Y

A Change in Urinary Albumin-to-Creatinine Ratio

No. of Patients


Finerenone	258	247	248	237	236	227
Empagliflozin	261	254	252	246	238	232
Empagliflozin+finerenone	265	248	253	248	240	238

Posthoc analysis of CONFIDENCE

Table 2. Percent change in UACR from baseline at various timepoints by baseline eGFR and baseline log UACR, all three treatment groups combined

	Change in UACR per log baseline UACR	Change in UACR per 10 mL/min/1.73 m ² baseline eGFR
	Percent (95% CI)	Percent (95% CI)
Day 14	-4.2 [-7.7 to -0.5]	-4.2 [-6.3 to -2.2]
Day 30	-2.7 [-6.5 to 1.1]	-4.8 [-6.9 to -2.7]
Day 90	-7.1 [-11.4 to -2.5]	-3.3 [-5.9 to -0.7]
Day 180	-8.7 [-14.4 to -2.7]	-7.5 [-10.7 to -4.1]

The ADA/KDIGO consensus proposes a holistic approach for improving outcomes in patients with diabetes and CKD

Lifestyle

Healthy diet

Physical activity

Smoking cessation

Weight management

First-line drug therapy

SGLT2i
(Initiate if eGFR ≥ 20 ;
continue until dialysis
or transplant)

Metformin
(if eGFR ≥ 30)

RAS inhibitor at maximum
tolerated dose (if HTN*)

Moderate- or
high-intensity statin

Regular reassessment
of glycemia, albuminuria,
BP, CVD risk, and lipids

Additional risk-based therapy

GLP-1 RA if needed to
achieve individualized
glycemic target

Nonsteroidal MRA[†] if
ACR ≥ 30 mg/g and
normal potassium

Dihydropyridine CCB
and/or diuretic* if
needed to achieve
individualized
BP target

Antiplatelet
agent for
clinical ASCVD

Ezetimibe, PCSK9i,
or icosapent ethyl if
indicated based on
ASCVD risk and lipids

Other glucose-lowering
drugs if needed to
achieve individualized
glycemic target

Steroidal MRA if
needed for resistant
hypertension
if eGFR ≥ 45

T2D only
All patients
(T1D and T2D)

*ACEi or ARB (at maximal tolerated doses) should be first-line therapy for hypertension when albuminuria is present. Otherwise, dihydropyridine calcium channel blocker or diuretic can also be considered; all three classes are often needed to attain BP targets. [†]Finerenone is currently the only nonsteroidal MRA with proven clinical kidney and CV benefits

2 ACR, albumin-to-creatinine ratio; BP, blood pressure; CCB, calcium channel blocker; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; MRA, mineralocorticoid receptor antagonist; PCSK9I, proprotein convertase subtilisin/kexin type 9 inhibitor; RASI, renin-angiotensin system inhibitor; SGLT-2i, sodium-glucose co-transporter-2 inhibitor; T1D, type 1 diabetes; UACR, urine albumin-to-creatinine ratio
4 de Boer IH, et al. Diabetes Care 2022;doi:10.2337/dc22-0027

The ADA/KDIGO consensus
positions finerenone after
treatment with RASis to protect
against persistent cardiorenal
risk in patients with diabetes and
CKD (UACR ≥ 30 mg/g)

Management of chronic kidney disease: a Hong Kong consensus recommendation

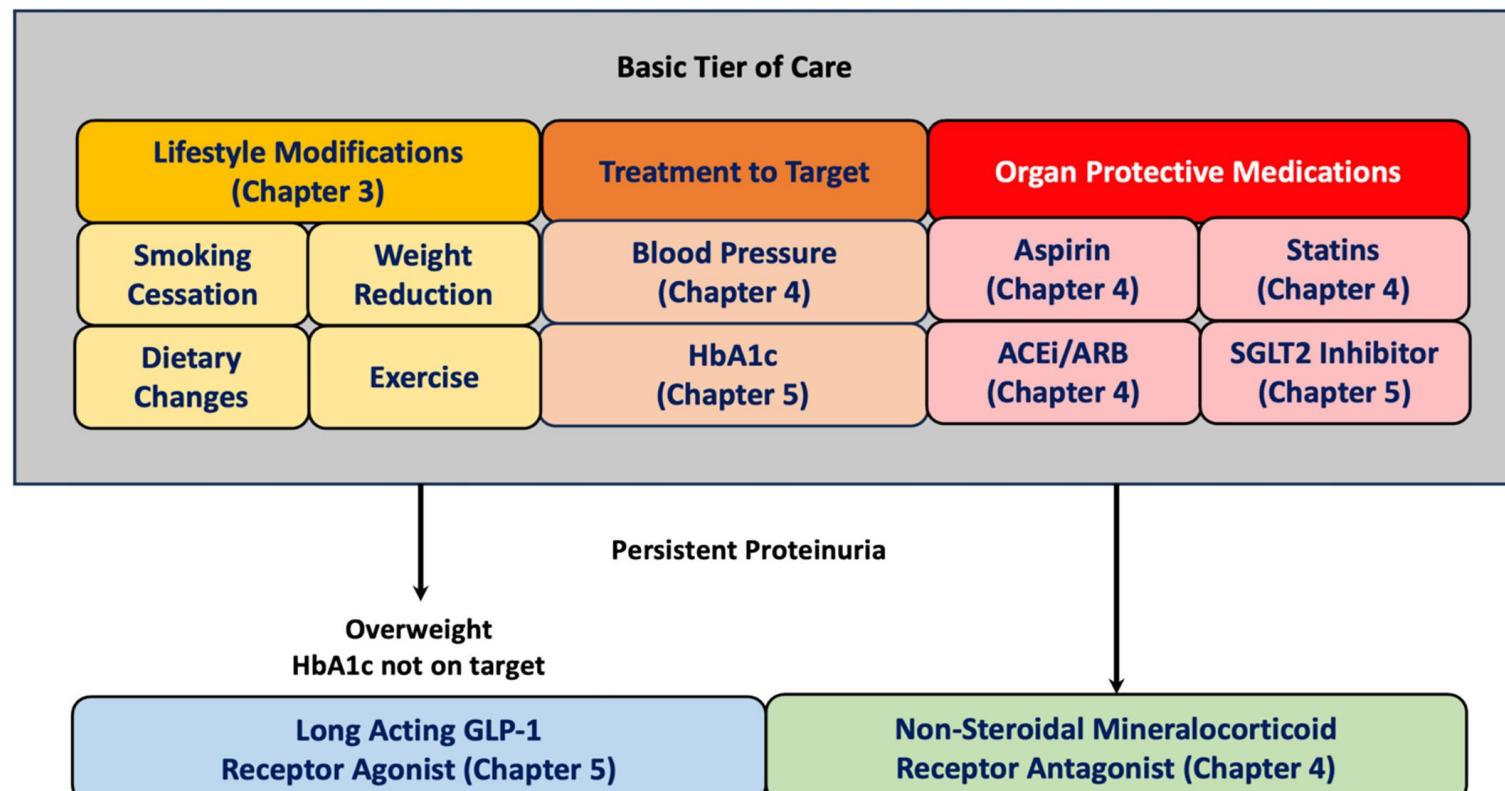
Sydney CW Tang *, Kelvin KL Ho, Welchie WK Ko, Albert Lee, CB Leung, WK Lo, Ronald CW Ma, SL Pang, Kathryn CB Tan, MW Tsang, Martin CS Wong, William CW Wong, Francis KM Wong, CC Szeto

Hong Kong Med J 2024;30:478-87

9	In patients with diabetes and hypertension or albuminuria, ACEis or ARBs should be initiated as first-line pharmacological treatment for renal protection and blood pressure control, and the maximum tolerated dose should be titrated.	1	100% (A: 79%, B: 21%, C: 0%, D: 0%, E: 0%)
10	In patients with T2DM and CKD who have an eGFR of ≥ 20 mL/min/1.73 m ² , a SGLT2i can be initiated as first-line pharmacological treatment for glycaemic control, renal protection, and cardiovascular protection.	1	93% (A: 64%, B: 29%, C: 7%, D: 0%, E: 0%)
11	Patients with T2DM who have an eGFR of ≥ 25 mL/min/1.73 m ² , normal serum potassium concentration, and uACR of ≥ 30 mg/g (≥ 3 mg/mmol) despite receiving the maximum tolerated dose of a RAS inhibitor can be treated with a nonsteroidal MRA for renal and cardiovascular protection, depending on accessibility.	1	86% (A: 50%, B: 36%, C: 14%, D: 0%, E: 0%)
12	Patients with T2DM and CKD who have not achieved individualised glycaemic targets despite metformin and SGLT2i treatment or who cannot use those medications can be treated with GLP-1 RAs.	1	100% (A: 64%, B: 36%, C: 0%, D: 0%, E: 0%)

Chapter 6 Cardio-renal protection in type 2 diabetes

↓ major adverse CV events,
all-cause mortality, and
composite kidney outcomes


	Optimal Care	Basic Care
<i>Atherosclerotic Cardiovascular Disease (ASCVD)</i>		
Screening/risk assessment	<ul style="list-style-type: none">• History of ASCVD• High-risk assessment<ul style="list-style-type: none">- Age plus 2 risk factors- CVD risk score	
Management	<ul style="list-style-type: none">• Glycaemic control• Risk factor control• Blood pressure/lipid control• Consider aspirin• SGLT2i or GLP-1RA• Consider SGLT2i and GLP-1RA• Finerenone	<ul style="list-style-type: none">• Glycaemic control• Risk factor control• Blood pressure/lipid control• Consider aspirin• SGLT2i*

Asian Pacific Society of Nephrology Clinical Practice Guideline on Diabetic Kidney Disease—2025 Update

APCN x TSN 2025
23th Asian Pacific Congress of Nephrology

Adrian Liew , Sunita Bavanandan, Chuan-Ming Hao, Soo Kun Lim, Narayan Prasad, Manisha Sahay, Paweena Susantitaphong, Veena Roberts, Eranga Wijewickrama, Muh Geot Wong, Sydney C. W. Tang

First published: 09 July 2025 | <https://doi.org/10.1111/nep.70030>

- *The choice between a long acting GLP-1 receptor agonist and a non-steroidal mineralocorticoid receptor antagonists as the next therapeutic agent will depend on cost, availability, tolerability and therapeutic goal.*
- *Where cost and accessibility are not issues, both agents can be used sequentially if proteinuria persists after the addition of the first drug.*

Design and baseline characteristics of the FIND-CKD trial testing finerenone in non-diabetic CKD

Focus was to describe the trial design and baseline characteristics of participants recruited to the FIND-CKD trial.

Methods

CKD without diabetes
eGFR $\geq 25 - < 90$ ml/min/1.73 m²
and UACR $\geq 200 - \leq 3500$ mg/g

Finerenone 10 or 20 mg vs placebo

Primary endpoint:

Mean annual rate of change in eGFR from baseline to month 32

Secondary endpoint:

Cardiorenal, kidney and cardiovascular composite outcomes

Heerspink, H. J. L. et al.

NDT (2024)

@NDTSocial

N=1584
randomized

Results

Mean eGFR
46.7
ml/min/1.73 m²

Median UACR
818.9
mg/g

Cause of kidney disease
Hypertensive/ischaemic 29.0%
IgA nephropathy 26.3%
FSGS 13.6%

Cardiovascular history
Hypertension 88.1%
Atherosclerotic CVD 11.9%
Heart failure 2.2%

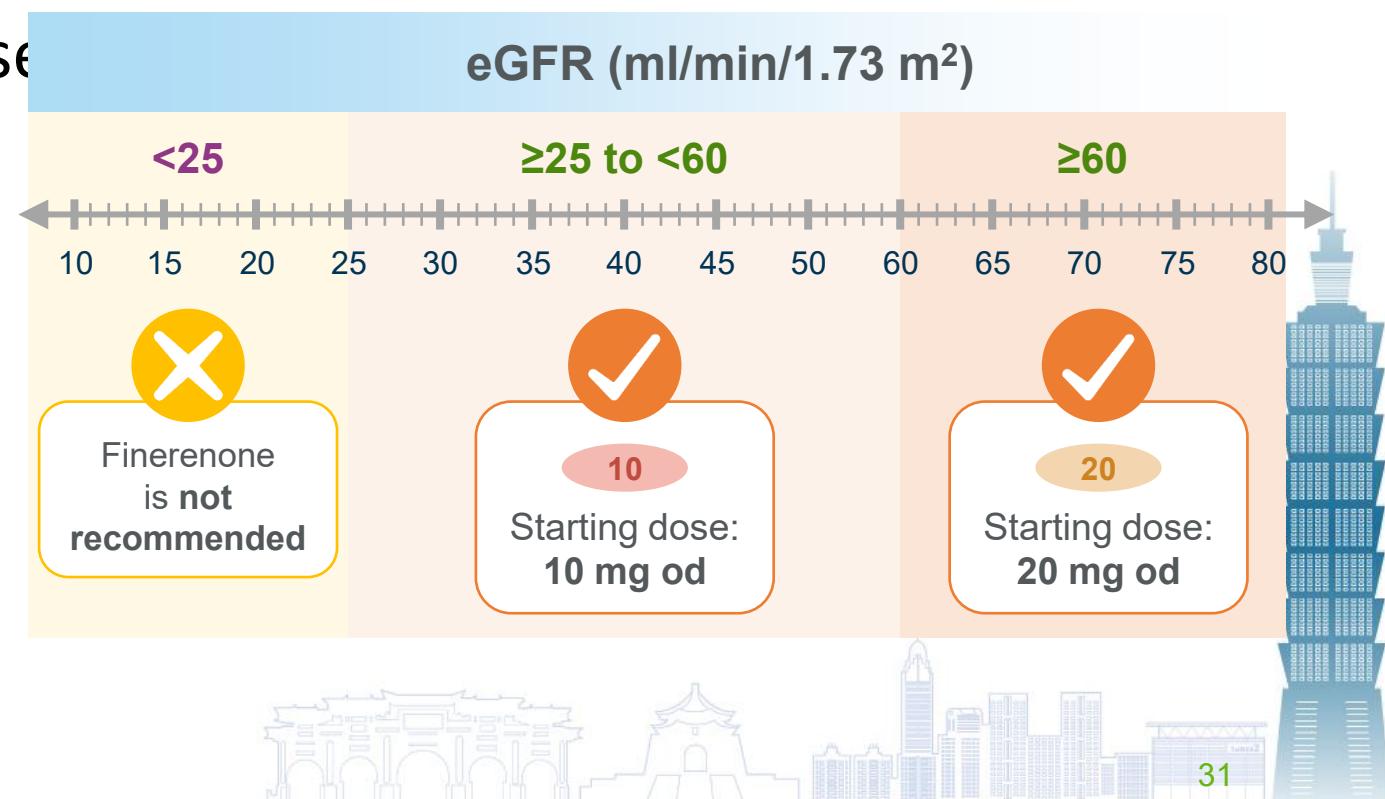
Concomitant medications
ACEi/ARB 99.8%
SGLT2 inhibitor 16.9%
Diuretic 17.8%

FIND-CKD is the first phase 3 trial of finerenone in patients with CKD of non-diabetic aetiology and seeks to expand the role of finerenone for kidney protection beyond type 2 diabetes.

Characteristic	Total (N=1584)
Age, years, mean (SD)	54.7 (14.3)
Sex, male, n (%)	1049 (66.2)
Race, n (%)	
Asian	866 (54.7)
White	648 (40.9)
Black	37 (2.3)
Other	33 (2.1)
Ethnicity, n (%)	
Non-Hispanic	1461 (92.2)
Hispanic	111 (7.0)
Region, n (%)	
Asia	844 (53.3)
Europe and Oceania	535 (33.8)
North America	132 (8.3)
Latin America	73 (4.6)

Characteristic	Total (N=1584)
eGFR, mL/min/1.73 m ² , mean (SD)	46.7 (16.1)
eGFR category, mL/min/1.73 m ² , n (%)	
<25	23 (1.5)
25 to <45	821 (51.8)
45 to <60	423 (26.7)
≥60	317 (20.0)
UACR, mg/g, median (IQR)	818.9 (577.4-1244.0)
UACR category, mg/g, n (%)	
<300	63 (4.0)
300 to ≤1000	929 (58.6)
>1000	592 (37.4)
BMI, kg/m ² , mean (SD)	27.6 (5.6)
SBP, mmHg, mean (SD)	129.5 (14.1)
DBP, mmHg, mean (SD)	80.0 (9.6)
HbA1c, % (SD)	5.5 (0.4)
Serum potassium, mmol/L, mean (SD)	4.5 (0.4)

In FIND-CKD, historical kidney biopsies from patients were available for 787 (49.7%) patients. Historical kidney biopsies were available for 42% and 36% of patients without diabetes in the EMPA-KIDNEY and DAPA-CKD trials, respectively.^{1,2}


Kidney disease etiology, n (%)	Total (N=1584)	CVD history and concomitant medications, n (%)	Total (N=1584)
Hypertensive/ischemic nephropathy	460 (29.0)	Hypertension	1396 (88.1)
Chronic glomerulonephritis	903 (57.0)	Atherosclerotic CVD	189 (11.9)
IgAN	417 (26.3)	Atrial fibrillation	59 (3.7)
FSGS	215 (13.6)	Heart failure	35 (2.2)
Primary FSGS	109 (6.9)	RAASis [‡]	1581 (99.8)
Secondary FSGS	106 (6.7)	ACEIs [‡]	435 (27.5)
Membranous nephropathy	91 (5.7)	ARBs [‡]	1146 (72.3)
Mesangial proliferative glomerulonephritis [†]	26 (1.6)	SGLT2 inhibitors	267 (16.9)
Other chronic glomerulonephritis	154 (9.7)	Potassium-lowering agents	58 (3.7)
Other	57 (3.6)	Potassium supplements	20 (1.3)
Unknown	164 (10.4)	Beta-blockers	403 (25.4)
		Diuretics	282 (17.8)
		Loop diuretics	128 (8.1)
		Thiazide diuretics	116 (7.3)
		Calcium channel blockers	794 (50.1)
		Statins	851 (53.7)

Initiation of treatment

Measurement of serum potassium levels and eGFR

- Serum potassium levels are measured to determine whether patients can initiate finerenone
- The recommended starting dose

Serum potassium levels	
mmol/l	Initiation of finerenone
≤4.8	Can be started
>4.8–5.0	May be considered*
>5.0	Not recommended

Continuation of treatment and dose adjustment

Serum $[K^+]$ and eGFR must be remeasured 4 weeks after:

- Initiation of treatment
- Restarting treatment
- Increase in dose

Thereafter, serum $[K^+]$ should be **remeasured periodically and as needed***

Treatment can be **maintained** in patients with an **eGFR $\geq 15 \text{ ml/min/1.73 m}^2$** . If **eGFR** falls below **15 ml/min/1.73 m²** **continue treatment with caution** regarding serum potassium levels as clinical experience is limited

Current serum potassium (mmol/l)

≤ 4.8

Dose adjustments:

Current finerenone dose

10 → 20 ← 20

Increase to# or maintain **20 mg od**

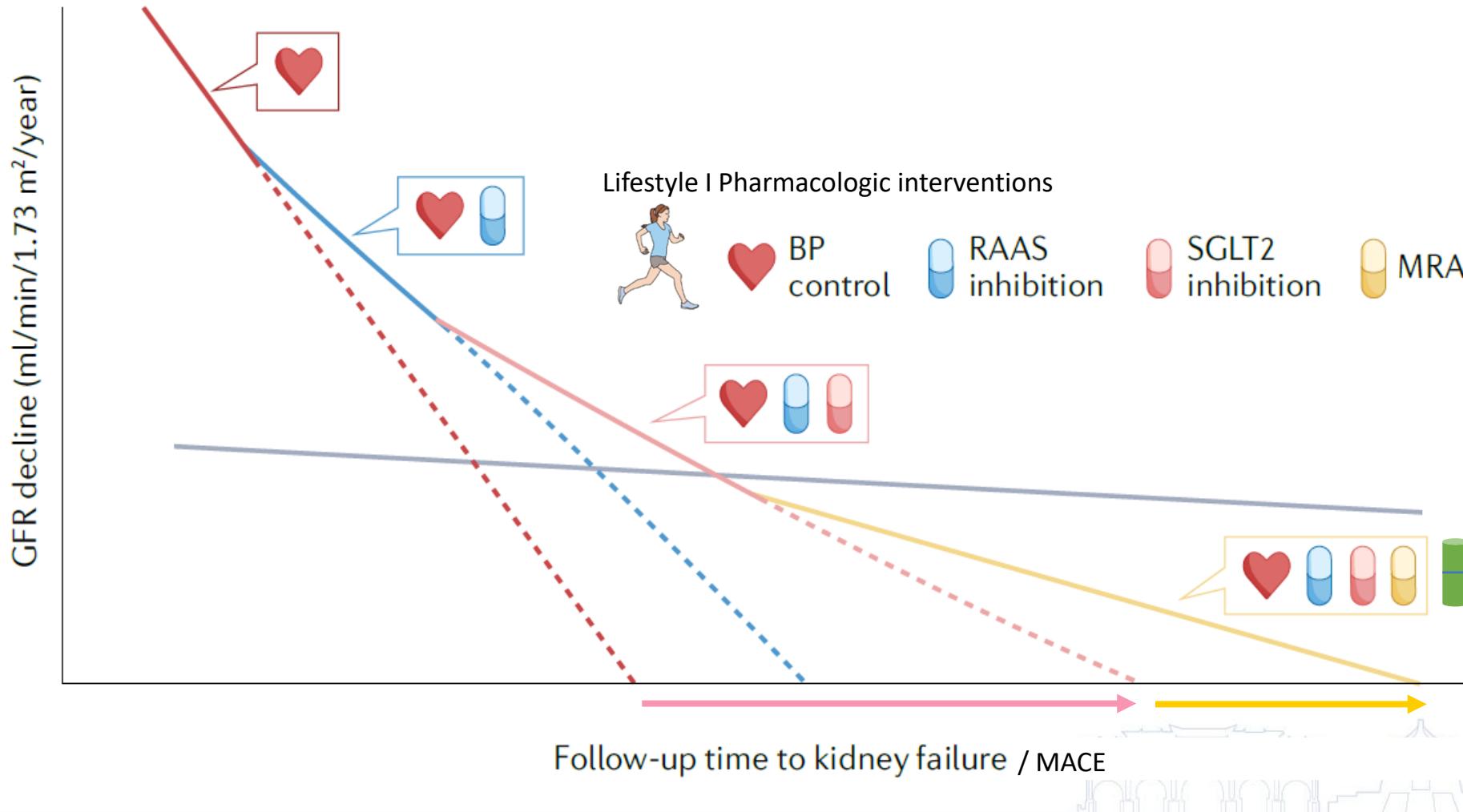
4.9–5.5

Maintain current dose

>5.5

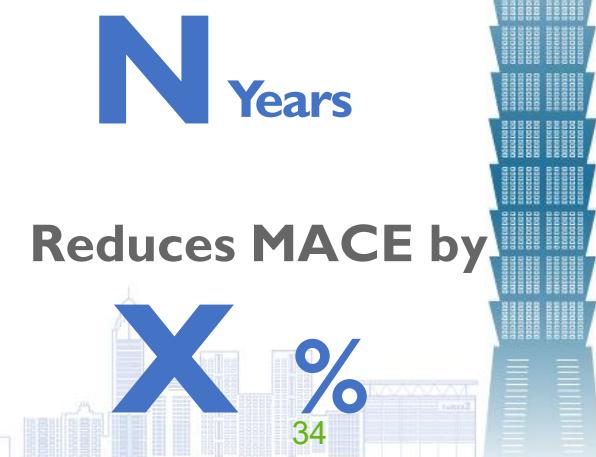
Withhold treatment

Restart at 10 mg od when serum $[K^+]$ is $\leq 5.0 \text{ mmol/l}$


The recommended target dose and maximum recommended dose of finerenone is 20 mg od

*Based on patient characteristics and serum $[K^+]$; #Maintain 10 mg od if eGFR has decreased >30% compared with the previous measurement

Mineralocorticoid Receptor Antagonism is a pillar for diabetic CKD care and may become one in nondiabetic CKD in due course



My Last Takeaway – Screen Early, Treat Better

Delays Dialysis by
N Years

Reduces MACE by
X %

Save the date and join us for the

ISN WORLD CONGRESS OF NEPHROLOGY 2026

MARCH 28-31, 2026 | YOKOHAMA, JAPAN

ISN
INTERNATIONAL SOCIETY
OF NEPHROLOGY

Hosted by **WCN'26**

theisn.org/wcn26

30 September – 3 October 2026

ISPD 2026 CONGRESS

Cape Town International Convention Centre (CTICC)

Cape Town, South Africa

In conjunction with the South African Renal Congress

www.ispd2026.org.za