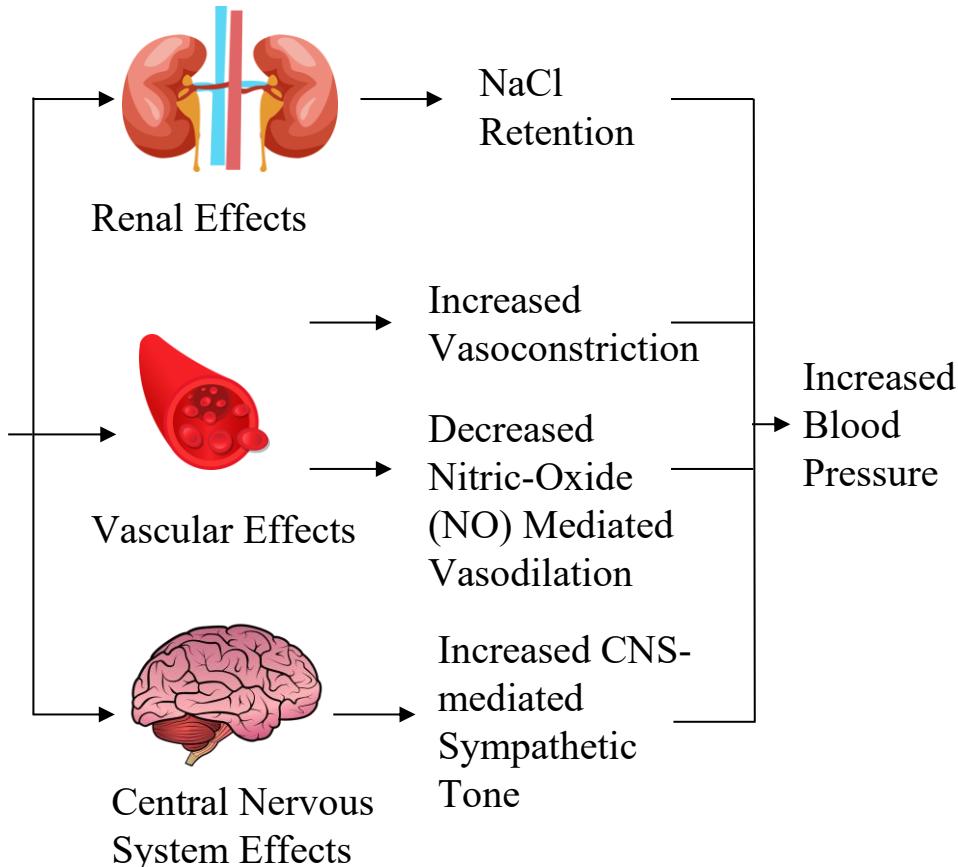


The Comparative Effectiveness Of Mineralocorticoid Receptor Antagonists And Aldosterone Synthase Inhibitors In The Treatment Of Essential Hypertension: A Systematic Review & Network Meta-analysis

Wryan Helmeczi, **Hadi Tehfe**, Tyler Pitre, Mina Gara, Amr Saleh, Gregory L. Hundemer

Institution: The Ottawa Hospital, University of Ottawa, Faculty of Medicine, Canada

Correspondence: Dr. Hadi Tehfe, E-mail: htehf091@uottawa.ca


Background

Adrenal Gland

→ Aldosterone → Mineralocorticoid Receptors

Figure 1. The pathway implicated in aldosterone's effects on regulation of blood pressure (BP) in the body.

Background

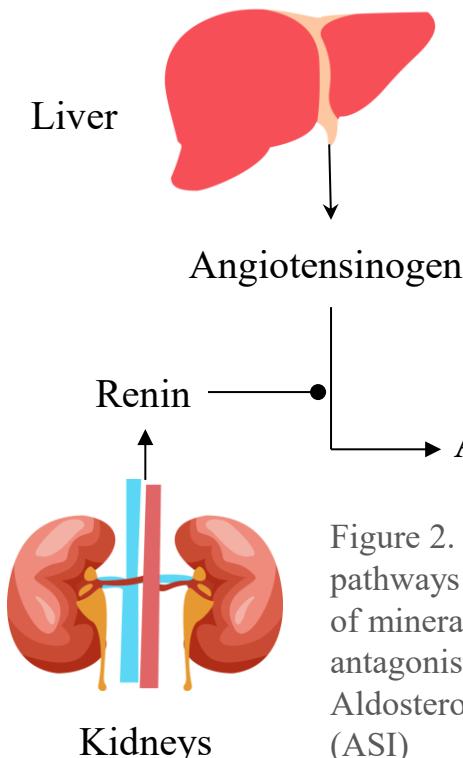
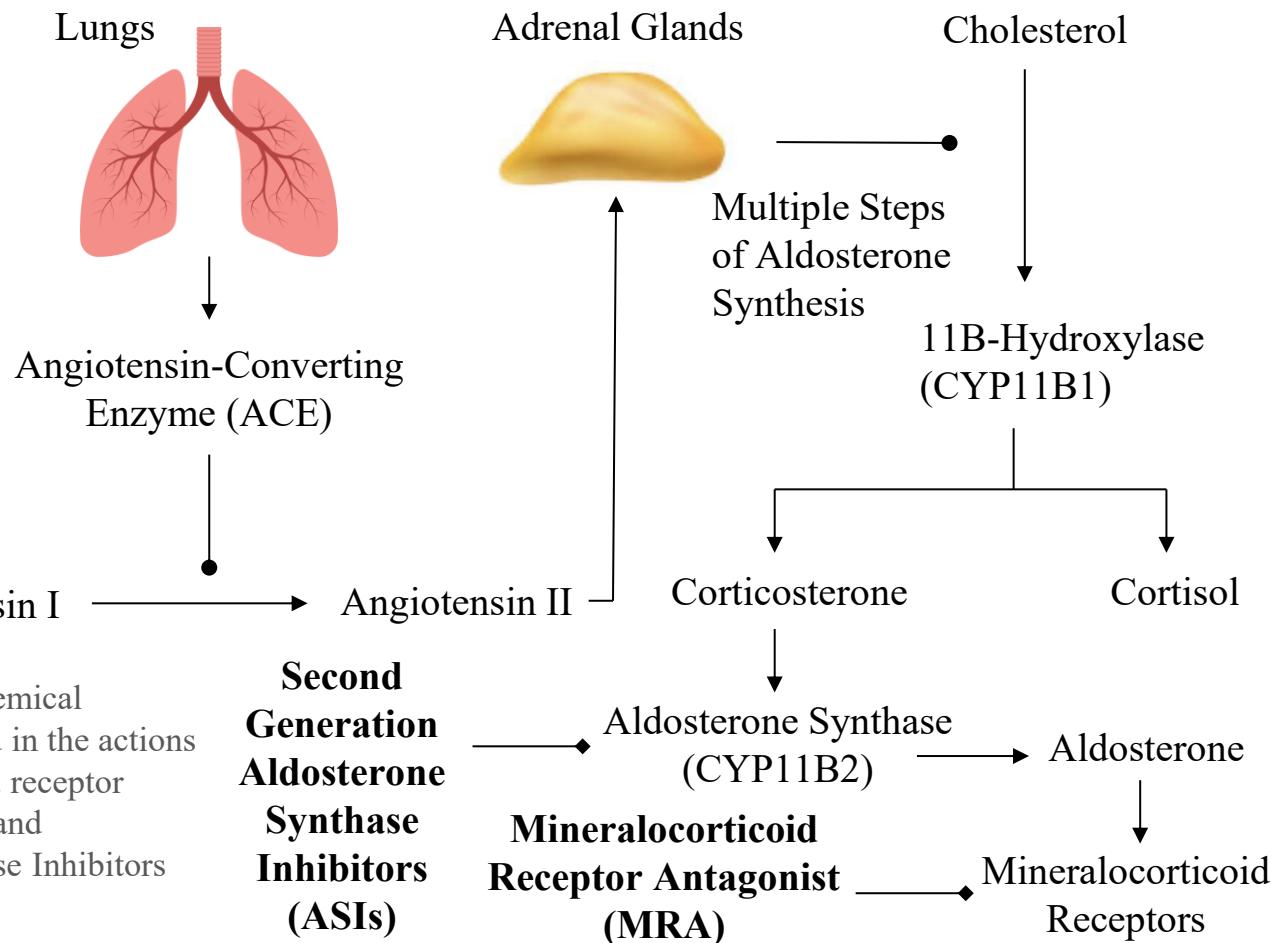



Figure 2. The biochemical pathways implicated in the actions of mineralocorticoid receptor antagonists (MRA) and Aldosterone-Synthase Inhibitors (ASI)

Objectives

- As there are currently few to no head-to-head trials that have compared MRAs and ASIs, the relative efficacy of each is unknown. We have performed, through a combination of direct and indirect comparisons, a systematic review and network meta-analysis to establish in adults with primary (non-secondary) hypertension (HTN) any differences in the following primary outcomes:
 - Changes in systolic blood pressure (sBP)
 - Changes in diastolic (dBP) blood pressure
 - Incidence of hyperkalemia

Methods

Search

Databases: MEDLINE, Embase, Cochrane CENTRAL, MEDLINE-In-Process, Scopus and Web of Science

Date Range: Inception - May 2025

Screening: With Covidence™, abstracts-titles were screened in duplicate as follows:

Inclusion Criteria

- Adult patients with HTN
- ASI/ MRA
- Randomized trial
- Comparator
- Reduction in SBP/DBP

Exclusion Criteria

- Pediatric patients
- Known secondary HTN
- Non-randomized trials
- No comparator

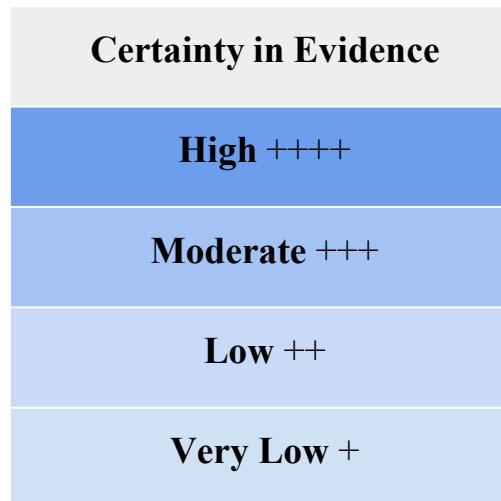
Methods

Data Extraction: Data was extracted in duplicate as follows:

Demographic Data

- Publication year, Country
- Sample size
- Male (%), Age
- Taking 3+ antihypertensives (%)
- Baseline eGFR
- Baseline serum sodium, potassium

Primary Outcomes


- Change in SBP*
- Change in DBP*
- Incidence of Hyperkalemia

*sBP and dBp were preferentially analysed with ambulatory BP monitoring (ABPM) data, followed by home BP (HBPM), automated office BP (AOBP), and manual office BP (OBPM).

Methods

Risk of Bias

Reviewers worked independently and in duplicate to assess risk of bias using the Cochrane RoB 2.0 tool. The certainty of evidence was then evaluated using the Cochrane GRADE approach for network meta-analysis. The certainty of each comparison was then rated on the following scale.

Based on →

- (1) Risk of Bias
- (2) Inconsistency
- (3) Indirectness
- (4) Publication Bias
- (5) Intransitivity
- (6) Incoherence (Difference between direct and indirect effects)
- (7) Imprecision

Results: PRISMA¹⁻³⁹

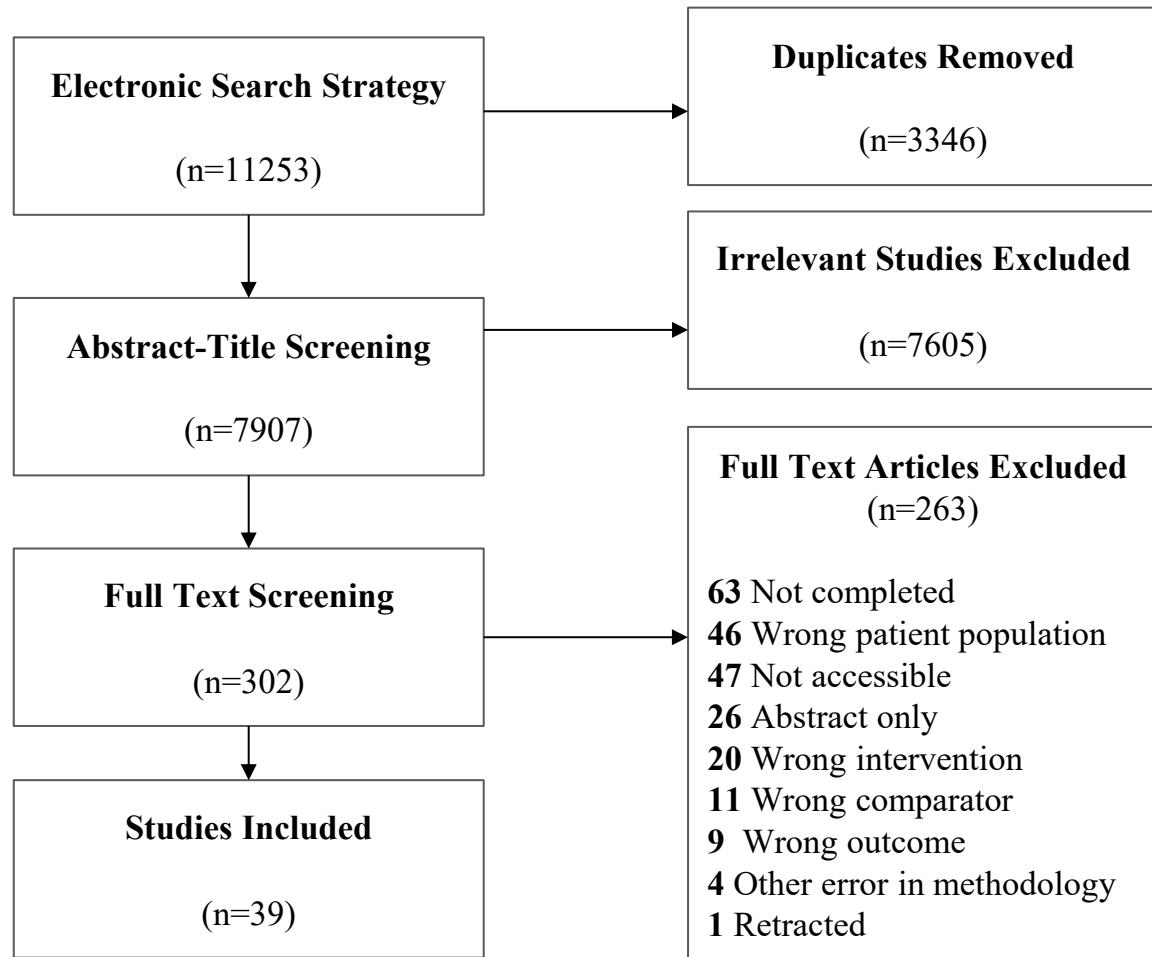


Figure 3: PRISMA flow diagram of screened, included or excluded studies

Results: 1-39

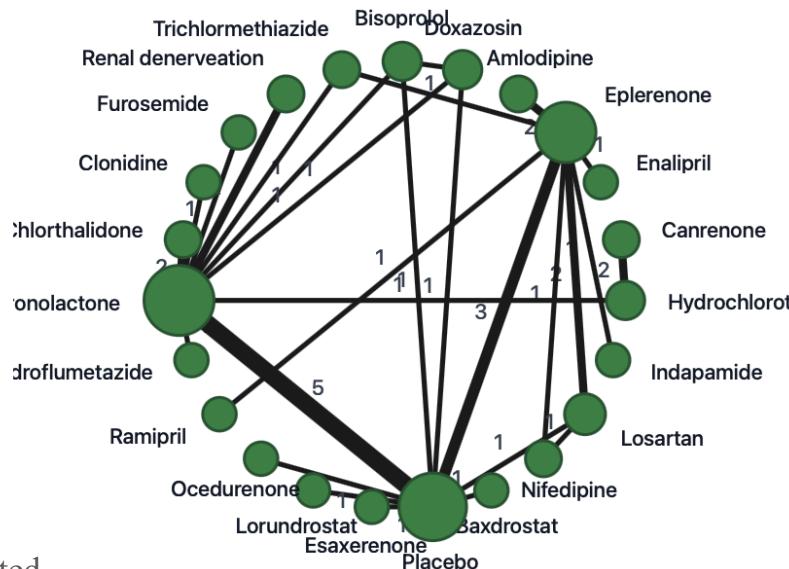


Figure 4: Example of a generated network diagram

Results: 1-39

Comparison	Mean Difference Combined ΔSBP (95% CI)	Mean Difference Combined ΔDBP (95% CI)	Certainty
Spironolactone	-11.13 (-14.09 to -8.16)	-4.32 (-5.42 to -3.22)	Low
Eplerenone	-9.39 (-10.09 to -8.56)	-5.08 (-5.47 to -4.69)	Low
Esaxerenone	-9.48 (-11.60 to -7.35)	-4.89 (-6.56 to -3.22)	Low
Ocedurenone	-8.47 (-14.76 to -2.18)	-4.85 (-8.89 to -0.81)	Low
Lorundrostat	-7.23 (-9.67 to -4.79)	-3.50 (-13.39 to 6.39)	Low
Baxdrostat	-7.19 (-14.79 to 0.41)	-2.32 (-7.60 to 2.96)	Low

Table 1: The mean difference in combined ΔSBP/DBP in comparison to placebo

Results: 1-39

Comparison	Relative Risk (95% CI)	Certainty
Spironolactone	3.26 (2.01 to 5.28)	Low
Eplerenone	0.62 (0.16 to 2.43)	Low
Esaxerenone	2.68 (0.93 to 7.68)	Low
Ocedurenone	2.99 (0.69 to 13.01)	Low
Lorundrostat	4.88 (0.52 to 46.10)	Low
Baxdrostat	5.10 (0.29 to 88.10)	Low

Table 2: The relative risk of incidence of hyperkalemia in comparison to placebo

Discussion

- Thus, current evidence suggests equivalent BP-lowering effectiveness among MRAs and second-generation ASIs in primary hypertension, making the MRAs and ASIs evaluated reasonable options for managing HTN. This conclusion is important for physicians as:
 - ASIs do not exert any non-aldosterone-mediated activation of the MR particularly the myocardium.
 - ASIs should exert protection against non-genomic aldosterone-mediated deleterious effects

Discussion

- In terms of the incidence of hyperkalemia, **Eplerenone** may confer a lower—though imprecisely estimated—risk of hyperkalemia compared with other agents and could be preferred in patients at heightened risk.

The Ottawa
Hospital

L'Hôpital
d'Ottawa

uOttawa

Faculté de médecine
Faculty of Medicine

Thank you! Questions?

References

1. El Mokadem M, Abd El Hady Y, Aziz A. A Prospective Single-Blind Randomized Trial of Ramipril, Eplerenone and Their Combination in Type 2 Diabetic Nephropathy. *Cardiorenal Med.* 2020;10(6):392–401.
2. Derosa G, Gaudio G, Pasini G, D'Angelo A, Maffioli P. A randomized, double-blind clinical trial of canrenone vs hydrochlorothiazide in addition to angiotensin II receptor blockers in hypertensive type 2 diabetic patients. *Drug Des Devel Ther.* 2018 Aug 24;12:2611–6.
3. Eguchi K, Kabutoya T, Hoshide S, Ishikawa S, Kario K. Add-On Use of Eplerenone Is Effective for Lowering Home and Ambulatory Blood Pressure in Drug-Resistant Hypertension. *J Clin Hypertens (Greenwich)*. 2016 Dec;18(12):1250–7.
4. Laffin LJ, Rodman D, Luther JM, Vaidya A, Weir MR, Rajicic N, et al. Aldosterone Synthase Inhibition With Lorundrostat for Uncontrolled Hypertension: The Target-HTN Randomized Clinical Trial. *JAMA*. 2023 Sept 26;330(12):1140–50.
5. White WB, Carr AA, Krause S, Jordan R, Roniker B, Oigman W. Assessment of the novel selective aldosterone blocker eplerenone using ambulatory and clinical blood pressure in patients with systemic hypertension. *Am J Cardiol*. 2003 July 1;92(1):38–42.
6. Fogari R, Derosa G, Zoppi A, Lazzari P, D'Angelo A, Mugellini A. Comparative effect of canrenone or hydrochlorothiazide addition to valsartan/amlodipine combination on urinary albumin excretion in well-controlled type 2 diabetic hypertensive patients with microalbuminuria. *Expert Opin Pharmacother*. 2014 Mar;15(4):453–9.
7. Yutaka M, Mifune M, Kubota E, Itoh H, Saito I. Comparison of effects of low dose of spironolactone and a thiazide diuretic in patients with hypertension treated with an angiotensin-converting enzyme inhibitor or an angiotensin type 1 receptor blocker. *Clin Exp Hypertens*. 2009 Nov;31(8):648–56.
8. Menon DV, Arbique D, Wang Z, Adams-Huet B, Auchus RJ, Vongpatanasin W. Differential effects of chlorthalidone versus spironolactone on muscle sympathetic nerve activity in hypertensive patients. *J Clin Endocrinol Metab*. 2009 Apr;94(4):1361–6.
9. Mahmud A, Mahgoub M, Hall M, Feely J. Does aldosterone-to-renin ratio predict the antihypertensive effect of the aldosterone antagonist spironolactone? *Am J Hypertens*. 2005 Dec;18(12 Pt 1):1631–5.

References

10. Ito S, Itoh H, Rakugi H, Okuda Y, Yoshimura M, Yamakawa S. Double-Blind Randomized Phase 3 Study Comparing Esaxerenone (CS-3150) and Eplerenone in Patients With Essential Hypertension (ESAX-HTN Study). *Hypertension*. 2020 Jan;75(1):51–8.
11. Matthesen SK, Larsen T, Vase H, Lauridsen TG, Jensen JM, Pedersen EB. Effect of amiloride and spironolactone on renal tubular function and central blood pressure in patients with arterial hypertension during baseline conditions and after furosemide: a double-blinded, randomized, placebo-controlled crossover trial. *Clin Exp Hypertens*. 2013;35(5):313–24.
12. Bakris G, Pergola PE, Delgado B, Genov D, Doliashvili T, Vo N, et al. Effect of KBP-5074 on Blood Pressure in Advanced Chronic Kidney Disease: Results of the BLOCK-CKD Study. *Hypertension*. 2021 July;78(1):74–81.
13. Ohta Y, Ishizuka A, Hayashi S, Iwashima Y, Kishida M, Yoshihara F, et al. Effects of a selective aldosterone blocker and thiazide-type diuretic on blood pressure and organ damage in hypertensive patients. *Clin Exp Hypertens*. 2015;37(7):569–73.
14. Adachi H, Kakuma T, Kawaguchi M, Kumagai E, Fukumoto Y. Effects of eplerenone on blood pressure and glucose metabolism in Japanese hypertensives with overweight or obesity. *Medicine (Baltimore)*. 2019 Apr 12;98(15):e14994.
15. Ni X, Zhang J, Zhang P, Wu F, Xia M, Ying G, et al. Effects of Spironolactone on Dialysis Patients With Refractory Hypertension: A Randomized Controlled Study. *J Clin Hypertens (Greenwich)*. 2014 July 22;16(9):658–63.
16. Ito S, Itoh H, Rakugi H, Okuda Y, Yamakawa S. Efficacy and safety of esaxerenone (CS-3150) for the treatment of essential hypertension: a phase 2 randomized, placebo-controlled, double-blind study. *J Hum Hypertens*. 2019 July;33(7):542–51.
17. Saruta T, Kageyama S, Ogihara T, Hiwada K, Ogawa M, Tawara K, et al. Efficacy and safety of the selective aldosterone blocker eplerenone in Japanese patients with hypertension: a randomized, double-blind, placebo-controlled, dose-ranging study. *J Clin Hypertens (Greenwich)*. 2004 Apr;6(4):175–83; quiz 184–5.
18. Flack JM, Oparil S, Pratt JH, Roniker B, Garthwaite S, Kleiman JH, et al. Efficacy and tolerability of eplerenone and losartan in hypertensive black and white patients. *J Am Coll Cardiol*. 2003 Apr 2;41(7):1148–55.
19. Williams GH, Burgess E, Kolloch RE, Ruilope LM, Niegowska J, Kipnes MS, et al. Efficacy of eplerenone versus enalapril as monotherapy in systemic hypertension. *American Journal of Cardiology*. 2004 Apr 15;93(8):990–6.
20. Abolghasmi R, Taziki O. Efficacy of low dose spironolactone in chronic kidney disease with resistant hypertension. *Saudi J Kidney Dis Transpl*. 2011 Jan;22(1):75–8.

References

21. Ito S, Kashihara N, Shikata K, Nangaku M, Wada T, Okuda Y, et al. Esaxerenone (CS-3150) in Patients with Type 2 Diabetes and Microalbuminuria (ESAX-DN): Phase 3 Randomized Controlled Clinical Trial. *Clin J Am Soc Nephrol.* 2020 Dec 7;15(12):1715–27.
22. Laffin LJ, Kopjar B, Melgaard C, Wolski K, Ibbetson J, Bhikam S, et al. Lorundrostat Efficacy and Safety in Patients with Uncontrolled Hypertension. *N Engl J Med.* 2025 May 8;392(18):1813–23.
23. Attar A, Sadeghi AA, Amirmoezi F, Aghasadeghi K. Low Dose Spironolactone Monotherapy in the Management of Stage I Essential Hypertension: A Pilot Randomized, Double-Blind, Placebo-Controlled Trial. *Acta Cardiol Sin.* 2018 Jan;34(1):59–65.
24. Oxlund CS, Henriksen JE, Tarnow L, Schousboe K, Gram J, Jacobsen IA. Low dose spironolactone reduces blood pressure in patients with resistant hypertension and type 2 diabetes mellitus: a double blind randomized clinical trial. *J Hypertens.* 2013 Oct;31(10):2094–102.
25. Fujimura N, Noma K, Hata T, Soga J, Hidaka T, Idei N, et al. Mineralocorticoid receptor blocker eplerenone improves endothelial function and inhibits Rho-associated kinase activity in patients with hypertension. *Clin Pharmacol Ther.* 2012 Feb;91(2):289–97.
26. Freeman MW, Halvorsen YD, Marshall W, Pater M, Isaacsohn J, Pearce C, et al. Phase 2 Trial of Baxdrostat for Treatment-Resistant Hypertension. *New England Journal of Medicine.* 2023 Feb 1;388(5):395–405.
27. Kiuchi MG, Chen S, Hoye NA, Pürerfellner H. Pulmonary vein isolation combined with spironolactone or renal sympathetic denervation in patients with chronic kidney disease, uncontrolled hypertension, paroxysmal atrial fibrillation, and a pacemaker. *J Interv Card Electrophysiol.* 2018 Jan;51(1):51–9.
28. Rosa J, Widimský P, Waldauf P, Lambert L, Zelinka T, Táborský M, et al. Role of Adding Spironolactone and Renal Denervation in True Resistant Hypertension: One-Year Outcomes of Randomized PRAGUE-15 Study. *Hypertension.* 2016 Feb;67(2):397–403.
29. Yamanari H, Nakamura K, Miura D, Yamanari S, Ohe T. Spironolactone and chlorthalidone in uncontrolled elderly hypertensive patients treated with calcium antagonists and angiotensin II receptor-blocker: effects on endothelial function, inflammation, and oxidative stress. *Clin Exp Hypertens.* 2009 Oct;31(7):585–94.
30. Kithas PA, Supiano MA. Spironolactone and hydrochlorothiazide decrease vascular stiffness and blood pressure in geriatric hypertension. *J Am Geriatr Soc.* 2010 July;58(7):1327–32.

References

31. Rossignol P, Claggett BL, Liu J, Vardeny O, Pitt B, Zannad F, et al. Spironolactone and Resistant Hypertension in Heart Failure With Preserved Ejection Fraction. *Am J Hypertens.* 2018 Mar 10;31(4):407–14.
32. Swaminathan K, Davies J, George J, Rajendra NS, Morris AD, Struthers AD. Spironolactone for poorly controlled hypertension in type 2 diabetes: conflicting effects on blood pressure, endothelial function, glycaemic control and hormonal profiles. *Diabetologia.* 2008 May;51(5):762–8.
33. Ogawa S, Takeuchi K, Mori T, Nako K, Ito S. Spironolactone further reduces urinary albumin excretion and plasma B-type natriuretic peptide levels in hypertensive type II diabetes treated with angiotensin-converting enzyme inhibitor. *Clin Exp Pharmacol Physiol.* 2006;33(5–6):477–9.
34. Liu Y, Dai S, Liu L, Liao H, Xiao C. Spironolactone is superior to hydrochlorothiazide for blood pressure control and arterial stiffness improvement: A prospective study. *Medicine (Baltimore).* 2018 Apr;97(16):e0500.
35. Krieger EM, Drager LF, Giorgi DMA, Pereira AC, Barreto-Filho JAS, Nogueira AR, et al. Spironolactone Versus Clonidine as a Fourth-Drug Therapy for Resistant Hypertension: The ReHOT Randomized Study (Resistant Hypertension Optimal Treatment). *Hypertension.* 2018 Apr;71(4):681–90.
36. Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. *Lancet.* 2015 Nov 21;386(10008):2059–68.
37. Oliveras A, Armario P, Clarà A, Sans-Atxer L, Vázquez S, Pascual J, et al. Spironolactone versus sympathetic renal denervation to treat true resistant hypertension: results from the DENERVHTA study - a randomized controlled trial. *J Hypertens.* 2016 Sept;34(9):1863–71.
38. Lee CJ, Ihm SH, Shin DH, Jeong JO, Kim JH, Chun KH, et al. Spironolactone vs Amiloride for Resistant Hypertension: A Randomized Clinical Trial. *JAMA.* 2025 June 17;333(23):2073–82.
39. Hollenberg NK, Williams GH, Anderson R, Akhras KS, Bittman RM, Krause SL. Symptoms and the distress they cause: comparison of an aldosterone antagonist and a calcium channel blocking agent in patients with systolic hypertension. *Arch Intern Med.* 2003 July 14;163(13):1543–8.