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EBRAEBIME > Carnivores are brave and fierce

S 2 N M TS 0 Grain eaters are wise and skillful

BSREHBHME » Those who eat breath will be enlightened and live longer
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Classical
monolithic
view
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Immunological Reviews 2014; 259, 192-205
Immunity 2013; 38, 414-423
Cell 2010; 140, 845-858

Cell Research (2020) 30:465 — 474
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microRNA ; miIR

microRNA exists in humans and other eukaryotic organisms.
Regulates gene expression by silencing target mRNAs to control biology.
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Hypothesis

*  miR-17-92 target Foxp3 co-regulators

* Eos, a co-regulators, physically interacts with Foxp3 for inhibition multiple genes in Treg

* Knockdown of co-regulator derepress genes and decreases suppressive activity of Tregs in vitro and
in vivo

Co-regulator




HIF-1 binds to miR-17-92 promoter
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Mir17-92 target foxp3 co-regulato
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Target scan prediction

miR-17-92 overexpression mice
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* Colitis model (iv transfer Teff 5x10°,Treg 1x10° into Rag2 KO mice)
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The development of Ty, cells is initiated by and dependent on their movement out of the T-
cell zone and into the B-cell follicle. This migration process is regulated by upregulation of
CXCR5 as well as downregulation of both CCR7 and P-selectin glycoprotein ligand 1 (PSGL1).

Tey cells have unique developmental regulation and Bcl6 was reported to be selectively
expressed in T, cells. However, although Bcl6 potentiates Tq,-cell generation in vivo, recent
data suggest that it may not regulate CXCR5 upregulation by activated T cells or their

migration to B-cell follicles in vivo.

The transcriptional mechanisms underlying initial T;,-cell commitment remain unclear.



Up-regulated miRNA in Up-regulated miRNA in
SLE plasma SLE CD3+ T cells
(3 SLE / 3 healthy donor) (GSE13887, 10 SLE /9 healthy donor)

Eos target prediction
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« miR17-92 CD4 T cell specific knockout improved pristane induced lupus nephritis

« Alleviate splenomegaly and lymphadenopathy
 Decrease Th17 and Th1
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miR17-92 CD4 T cell specific knockout decrease autoimmune response

e Decrease TFH

« Decrease germinal center B cells, plasma cells and autoantibody
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miR17-92 CD4 T cell specific knockout X Pten T cell specific knockout

* Rescue Tfh partially
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« miR17-92 CD4 T cell specific knockout
« Alleviate lupus nephritis

* Decrease Th17 and Th1 infiltration in kidney
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Glutamine, the most abundant amino acid in our body

Glutamine
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6-Diazo-5-oxo-L-norleucine (DON)

* an unconventional amino acid having a structure similar to
glutamine

* DON broadly blocks glutamine utilizing pathways in cancer cells

Role of glutamine metabolism in kidney injury?
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TH17 polarization condition with glutamine-free medium (GF) that
replete glutamine at different time point/ with different concentration
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Decreased SLC2A1 (Glucose transporter 1 or GLUT1)
MRNA in GF condition
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Fatty acid metabolism modulate
polarization of GIn-free induced Treg

(transport) (metabolism) (function)
CD36 PPARa PDCD1
: £
¢ er ¢ GF c GF
OCR
ECAR "

- F @ CtiTH17
c 8 ] Ctl TH17 = b -
E = 1 4 n fr
E 0 } { { B I I ® Ginfree E 425 1 ® ee
[ 0 e i o
= 20 £ 250 ¢ t I3 1
= S 3331 il
x . & I— 1 x . !
ST Nt e == 3
UJOI L | »—8—% (@] ol

0 20 40 60 80 100 120
0 20 40 60 80 100 120
Minutes

Minutes



richment (fold)

En

1
1

richment (fold)

En

501
004

50

10T

e N & o
—_ 1

o - - ~
o o o o
1 1

o
o

Glutamine modulate epigenetic regulation on
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DON inhibits follicular helper T cells differentiation
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DON inhibits germinal center B cells and plasma cells differentiation
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DON enhances follicular regulatory T cells differentiation

Foxp3
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oDON prevents elevation in serum autoantibody levels in mice with
early SLE
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DON prevents I1gG deposition in glomeruli and renal vasculatures in
mice with early SLE
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