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Prevalence of chronic kidney disease
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Stage 1a: 0-9%
Stage 1b: 0-1%

Stage 2a: 3-5%

Stage 2b: 0-3%

_| Stage 3a: 6-0%

Stage 3b: 0-8%
Stage 4:0-2%

Total: 11.9%

CKD prevalence in Taiwan

Total
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Stage 2:3-8%

> Stage 3:6:8%

Stage 4: 0-2%
Stage 5: 0-1%

One in every 8 people —
12% of Taiwan’s population, or 3 million people —

Truth No. 1: High Prevalence Rate.

Lancet. 2008 Jun 28;371(9631):2173-82



Hemodialysis prevalence in Taiwan
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Life expectancy and CKD
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Albuminuria stage 1, normal or mildly increased (ACR <30 mg/g); albuminuria stage 2, moderately increased (ACR 30-299 mg/g); albuminuria stage 3, severely increased (ACR =300 mg/g)

Lancet. 2013 Jul 27;382(9889):339-52.



Increased risk of chronic kidney disease
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Environmental Pollution &

Kidney Diseases KidHGYNeWS

Air pollution

Climate change and heat stress

Fine particulate matter (PM2_5), nitrogen dioxide, ozone | Extreme heat, dehydration, vector-borne diseases

« Mechanism of injury:
o Airborne pollutants enter the bloodstream through the lungs, inducing systemic
inflammation and oxidative stres, leading to endothelial dysfunction.
o Chronic exposure promotes microvascular damage.
= Associated kidney diseases: Chronic kidney disease and glomerular disease
o Increased risk of albuminuria, progressive decline of GFR
o Higher incidence of glomerular disease, particularly membranous nephropathy
o Greater susceptibility in individuals with hypertension and diabetes

« Mechanism of injury:
o Heat exposure and inadequate hydration causing recurrent dehydration lead to
repeated episodes of subclinical rhabdomyolysis.
> Multifactorial in vector-borne diseases (e.g., dengue fever and malaria)
« Associated kidney diseases: Chronic kidney disease of unknown etiology (CKDu)
o Nontraditional CKD seen in agricultural workers in hot climates
o Chronic tubulointerstitial nephritis with progressive loss of GFR

Heavy metals (lead, cadmium, mercury

« Mechanism of injury:
o Accumulation in proximal renal tubules, causing direct cellular toxicity
o Autoimmune dysfunction with activation of T cell-dependent polyclonal B cells

« Associated kidney diseases: Acute kidney injury and glomerular disease
o Lead: Exposure is associated with tubulointerstitial inflammation and fibrosis.
o Cadmium: Chronic exposure leads to proximal tubular dysfunction & proteinuria.
o Mercury: Acute exposure causes acute tubular necrosis, and chronic exposure

can cause membranous nephropathy and minimal change disease.

» Mechanism of injury:
o Toxic compounds cause oxidative damage and mitochondrial dysfunction in
renal tubules, leading to tubular atrophy and interstitial fibrosis.
« Associated kidney diseases: Chronic kidney disease
o Increased risk of kidney failure in individuals exposed to pesticides
o Spouses of individuals exposed to pesticides may also be affected (without
having had direct contact with pesticides).

Water contaminants

VA: Dr. Alejandro Garcia-Rivera () @alexgr23

Kidney news; Volume 17: Issue 5



Common Environmental toxins in the water
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What are PFAS?
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WHY WE CREATED PFAS: THE
GOOD SIDE

1. Pushes Away “ Put;fsu-: Fares 3. Super Strong

Water & Oil & Lasts Long



Common sources of PFAS
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PFAS history and global use
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Ecotoxicology and Environmental Safety Volume 267, 15 November 2023, 115663



Environmental Sources and Transport
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Global PFAS Contamination and Exposure
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Blood PFAS Profiles Across Countries
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Toxicological Mechanisms and Health Effects

* PFAS induce oxidative stress, inflammation, mitochondrial

dysfunction
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» Reduced bone mineral density.

« Skeletal malformation, deposition and
sequestration in bone, bone cell
differentiation, and osteoporosis

)

+ Changes on the level, production, and
activity of hormones and expression of
hormone receptors

* Impacts on various organs and glands
with increased risk of diseases

E1Y avoue sysom a avavor

+ Caused behavior deficits, neurotoxicity,
and ototoxicity

+ Changes in level/expression of
neurotransmitters

R ws——

« Altered cell proliferation, cell-cycle
regulation, cell migration and invasion,
gene expression, and histone
modifications, with tumorigenesis

« Affect almost any organ or tissue

« Abnormal changes e.g., low birth weight,
overweight/obese, and cell size.

+ Altered metabolism and growth.

* Increased risk of diseases

o, _’ g
q'.‘:: 0 0 Respiratory system

« Altered blood oxygen level

» Changes in cell structure and function of
the lungs, airways etc

+ Changes in histology e.g., throat (larynx or
pharynx)

« Increased risk of allergies and infectious
diseases such as heart failure coupled
with life-threatening illnesses

€

Changes in organ histology.

* Induced histopathological changes,
oxidative stress, cell apoptosis, necrosis,
changes in ROS, DNA damage, signaling
changes, and cell death

Impacted gene expression, metabolism,
and homeostasis

Contribute tovarious diseases and
biological functions

Immune system Urinary system

« Affect metabolite concentration and

L

+ Changes in inflammatory biomarkers and

immune response. metabolism « Altered cell and organ function
« Affect immune cell production, activity, « Impacted gene expression, cell function, + Changes in urinalysis, serum uric acid
and signaling, caused cell death and nuclear receptor pathway (e.g., LXR, level, and urine albumin/creatinine ratio
+ Increased risk of allergies and infectious RXR, and PPAR). + Caused diseases e.g., cancer and
diseases, coupled with life-threatening « Increased risk of metabolic disorders and diabetes
illnesses other chronic diseases

Ecotoxicology and Environmental Safety Volume 267, 15 November 2023, 115663
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« Caused dental carries and skin irritation
or sensitization e.g., atopic dermatitis,
with the potential development of
allergic illnesses

Sensory

* Increased risk of heart diseases or
cardiac events

« Binding to blood proteins, interrupted
hormone/protein interactions, and
caused displacement of hormones.

@f- Reproductive system

+ Altered hormone level, germ cell
production, and organ development and
function

« Failure of pubertal onset, infertility,
reduced fecundity, and miscarriage

+ Changes in embryo and fetus

development, and offspring birth weight

Increased risk of reproductive diseases.

rd oo

+ DNA damage, mitochondrial
depolarization, altered DNA methylation,
and telomere shortening

« Heritable genetic changes.



Toxicological Mechanisms and Health Effects

——— High certainty

------ Lower certairity Thyroid disease

Increased cholesterol levels

Developmental effects
affecting the unborn child

Breast cancer
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Delayed mammary gland

development Liver damage

Kidney cancer

Reduced response
to vaccines

inflammatory
bowel disease
(ulcerative colitis)

Lower birth weight
Obesity

Testicular cancer

_Early puberty onset

Increased miscarriage risk
(i.e. pregnancy loss

Increased time to pregnancy

Pregnancy induced
hypertension/pre-eclampsia
(increased blood pressure)

Low sperm count and mobility
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Development Development of tolerable weekly
intake amounts (TWI)

of tolerable
- PFOS PFOA
weekly intake o
o
amounts o *@ 1
"2
(TW |) L 1,050 ng/kg bw 10,500 ng/kg bw
per week per week
A factor of A factor of
«  from 2008 to 2020 with 81 1,750
increasing knowledge of 0‘2
the biological properties 8 PFOA
and the toxicity of PFAS | Total
the values for the ;t) ©1
tolerable weekly intake h 13 ng/kg bw
(TWI) were reduced in per week 6 ng/kg bw
EFSA (European food
safety authority). At least a factor of 4
~
2 PFOS + PFOA + PFNA + PFHXS

4.4 ng
kg bw per wek

Tolerable intake in nanograms per kilogram of body weight
(ng/kg bw) per week
(EESA 2020)

] . TWI = tolerable weekly intake. PFOS = perfluorooctanesulfonic acid
Environ Sci Eur 35, 20 (2023) PFOA = perfluorooctanoic acid, PFNA = perfluorononanooic acid



PFAS and Kidney Function

e Kidney is the primary organ for PFAS
elimination

* PFAS exposure may accelerate CKD
progression

— through mechanisms involving tubular injury,
mitochondrial dysfunction, and oxidative stress.

Environmental Research Volume 285, 15 November 2025



PFAS and Kidney Function

Highly protein-bound (esp. serum albumin) -
imited glomerular filtration

Partly reabsorbed in proximal tubules (OAT
transporters)

Arch Toxicol 2022 Nov 27



Knowledge Gaps

PFAS levels across CKD stages and hemodialysis

— How PFAS concentrations change with declining kidney function
remains poorly defined.

Dialysis clearance of PFAS
Impact of dialysis membrane characteristics
— Differences in PFAS removal between membranes are unknown.

Role of albumin binding

— High albumin affinity may limit dialytic clearance and prolong
retention.

Nutritional and metabolic influences

— How albumin, uric acid, and nPCR relate to PFAS accumulation
has not been systematically studied.



TAKO & TAKOO cohorts
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Eye exam
. Fundosm

n=378
« OCT
n=290
Brain exam
+ Brain MRI
n=396
« Carotid echo
n=347

Lung exam
+ lung function
n=220

Bone exam
« DEXA
n=305

Taiwan Kidney Outcome study (TAKO)

Eye exam
+ Fundoscopy
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n=528
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e Taiwan Kidney Outcome Omics study (TAKOO)

Omics data:
Genetics,

|
HD subcohort

n =347

Genetics (N =139)

Targeted Proteomics (N = 347)
Targeted Metabolomics (N = 347)
Microbiome (N = 85)
Environment toxins (N = 347)
Trace Elements (N =167)
Cogpitive function (N = 285)

' Epigenetics,

CKD subcohort
n=498 Proteomics,

* Genetics (N =53) MEtBbOlomiCS,

+ Targeted Proteomics (N = 344)
+ Targeted Metabolomics (N =498)
+ Trace Elements (N=153)

Gut microbiomics

International Journal of Epidemiology, Volume 54, Issue 5,
October 2025



Decreased levels of perfluoroalkyl
substances in hemodialysis

Scence of the Total Environment 896 (2023) 165184

Contents lists available at ScienceDirect

Scionco .- .
Tatal Environment

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Decreased levels of perfluoroalkyl substances in patients receiving )
hemodialysis treatment iy



Perfluoroalkyl substances (PFAS) were measured in
prevalent hemodialysis patients (n=301), stage 5 non-
dialysis chronic kidney disease (CKD) patients (n=20), and
health control (n=55) using UHPLC-MS/MS

|

9 PFAS were identified in this study,
including PFHpA, PFHXS, PFOA, PFNA,
PFDA, PFUNDA, PFBS, T-PFOS, and L-PFOS

PFBS data was excluded
because most sample were
below limit of detection (LOD)

A 4

8 PFAS were finally analyzed in hemodialysis patients,
stage 5 non-dialysis CKD patients, and health controls

Sci Total Environ 2023 Oct 20:896:165184



Decreased levels of PFAS in patients with HD
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The perfluoroalkyl substance level associated
with filter type in patients with hemodialysis

Ecotoxicology and Environmental Safety, 2025



The perfluoroalkyl substance level associated with filter type and nutrition
status in patients with hemodialysis

30 - 85 years Taiwan oo, PFHPA .o, PFHXS .. PFUnDA
hemodialysis patients (n = 301) ,,, l,

Nutritional markers _ ne
Albumin, Uric acid, nPCR = AR o

PFOS ol | - m
PFNA

PFDA —
Dialysis membrane types:
PFUNDA polysulfone (PS)

polyethersulfone (PES)
non-polysulfone (non-PS)

CONCLUSION
The levels of PFASs in hemodialysis patients were influenced by the dialysis membranes
properties and were exhibited a positively associations with nutritional markers.




PFAS concentration (ng/mL)
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Nutritional marker and PFAS

Blood Urea Nitrogen

Albumin

Uric acid

(1) Juai1014909 UOIIR|31102 UOSIE3d

nPCR

PFHpA PFHxS PFOA PFNA PFDA PFUNDA PFOS L-PFOS

Ecotoxicology and Environmental Safety, 2025



The distribution of PFAS in five CKD stages



Baseline Characteristics of Study Participants
Across Five CKD Stages

B n-o N=3 N=219 N=116

u 522(11.7) 60.4(11.9) 65.8(12.6)  67.5(12.1) 66.4(11.6)
M 7(77.8%)  22(66.7%)  158(72.1%)  65(56.0%) 55 (56.7%)
m 25.4(1.97) 27.1(3.56) 25.8(4.08)  25.3(3.96)  24.7(4.06)
m 4(44.4%)  13(39.4%) 100 (45.7%) 63 (54.3%) 43 (44.3%)
HTN 8(88.9%) 30(90.9%) 172(78.5%) 99 (85.3%) 84 (86.6%)
3(33.3%)  5(15.2%)  55(25.1%)  22(19.0%) 17 (17.5%)
5 100(9.53)  71.1(10.2) 42.5(8.28)  23.2(4.58)  10.0(3.04)
284(473)  310(540) 435 (766) 819 (1074) 1434 (1517)
5 0.06(0.05) 0.09(0.07) 0.66(4.77)  1.81(12.5)  0.45(3.65)
M 0.98(0.58) 1.23(0.96)  47.9(632) 22.2(162)  2.95(21.2)
” 1.74(0.75) 2.13(1.63) 11.6(82.3)  40.0(300)  12.5(116)
m 1.01(0.41) 1.56(1.20)  40.2(429) 124(958)  2.10(15.2)
5.49(1.92) 7.66(6.55) 17.9(154) 6.13(7.60)  3.56(2.88)
E 8.16(2.87) 10.5(9.15)  25.9(216) 8.62(10.9)  4.17(3.56)
5 0.60(0.32) 0.90(0.69)  12.3(103) 36.4(298)  2.64(21.6)
M 0.79(0.39)  1.25(1.08)  13.9(109) 46.5(319)  5.17(44.5)

Unpublished data



Levels of PFAS in Patients Across CKD stages
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Cubic spline plots showing the adjusted association between
eGFR and log-transformed serum PFAS concentrations.
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Concentrations of PFAS in Normoalbuminuria,
Microalbuminuria, and Macroalbuminuria
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Relationship Between total PFOS Concentrations and
Kidney Function in Patients with Renal Impairment

Unpublished data



Association between eGFR and PFAS levels using linear

PFUnDA

PFNA

PFDA

T_PFOS99

PFOA

L_PFOs99
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Association Between eGFR and Log—PFAS Levels (Models 1-4)

-0.01

regression.
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(134
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0.00 0.01
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0.02

Unpublished data



FPAS and kidney function in patients with kidney disease

474 patients with
chronic kidney disease

66¢

Kidney function by CKD-EPI eGFR
and urine ACR
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Albuminuria mediates the association between PFAS exposure and kidney function.

Unpublished data



Summary: PFAS and Kidney Function

@ PFAS are persistent "forever chemicals” that accumulate

via environmental exposure.

@ Kidneys are the main elimination route; CKD impairs

clearance, increasing body burden.

©@ Mechanisms of injury include oxidative stress,
inflammation, and mitochondrial dysfunction.

@ The relationship is bidirectional: low GFR causes

accumulation, which accelerates CKD.

@ Albumin binding and albuminuria significantly mediate
PFAS retention and toxicity.

©@ Hemodialysis effectively lowers serum PFAS levels

compared to non-dialysis CKD.
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